These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 30974376)
1. Enhanced removal of antimony by acid birnessite with doped iron ions: Companied by the structural transformation. Lu H; Zhang W; Tao L; Liu F; Zhang J Chemosphere; 2019 Jul; 226():834-840. PubMed ID: 30974376 [TBL] [Abstract][Full Text] [Related]
2. Antimony oxidation and sorption behavior on birnessites with different properties (δ-MnO Sun Q; Cui PX; Liu C; Peng SM; Alves ME; Zhou DM; Shi ZQ; Wang YJ Environ Pollut; 2019 Mar; 246():990-998. PubMed ID: 31159148 [TBL] [Abstract][Full Text] [Related]
3. Effects of Co(II) ion exchange, Ni(II)- and V(V)-doping on the transformation behaviors of Cr(III) on hexagonal turbostratic birnessite-water interfaces. Yin H; Sun J; Yan X; Yang X; Feng X; Tan W; Qiu G; Zhang J; Ginder-Vogel M; Liu F Environ Pollut; 2020 Jan; 256():113462. PubMed ID: 31706772 [TBL] [Abstract][Full Text] [Related]
4. Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and FeMn binary oxide. Liu R; Xu W; He Z; Lan H; Liu H; Qu J; Prasai T Chemosphere; 2015 Nov; 138():616-24. PubMed ID: 26218341 [TBL] [Abstract][Full Text] [Related]
5. Antimonate Controls Manganese(II)-Induced Transformation of Birnessite at a Circumneutral pH. Karimian N; Hockmann K; Planer-Friedrich B; Johnston SG; Burton ED Environ Sci Technol; 2021 Jul; 55(14):9854-9863. PubMed ID: 34228928 [TBL] [Abstract][Full Text] [Related]
6. The mechanism of antimony(III) removal and its reactions on the surfaces of Fe-Mn binary oxide. Xu W; Wang H; Liu R; Zhao X; Qu J J Colloid Interface Sci; 2011 Nov; 363(1):320-6. PubMed ID: 21840528 [TBL] [Abstract][Full Text] [Related]
7. [Adsorption of heavy metals on the surface of birnessite relationship with its Mn average oxidation state and adsorption sites]. Wang Y; Tan WF; Feng XH; Qiu GH; Liu F Huan Jing Ke Xue; 2011 Oct; 32(10):3128-36. PubMed ID: 22279934 [TBL] [Abstract][Full Text] [Related]
8. Co2+-exchange mechanism of birnessite and its application for the removal of Pb2+ and As(III). Yin H; Liu F; Feng X; Liu M; Tan W; Qiu G J Hazard Mater; 2011 Nov; 196():318-26. PubMed ID: 21963172 [TBL] [Abstract][Full Text] [Related]
9. Antimony(III) removal by biogenic manganese oxides formed by Pseudomonas aeruginosa PA-1: kinetics and mechanisms. Li Q; He Y; Yang A; Hu X; Liu F; Mu J; Mei S; Yang LP Environ Sci Pollut Res Int; 2023 Sep; 30(43):97102-97114. PubMed ID: 37584806 [TBL] [Abstract][Full Text] [Related]
10. [Lead adsorption and arsenite oxidation by cobalt doped birnessite]. Yin H; Feng XH; Qiu GH; Tan WF; Liu F Huan Jing Ke Xue; 2011 Jul; 32(7):2092-101. PubMed ID: 21922836 [TBL] [Abstract][Full Text] [Related]
11. Modeling coupled kinetics of antimony adsorption/desorption and oxidation on manganese oxides. Shi Z; Peng S; Wang P; Sun Q; Wang Y; Lu G; Dang Z Environ Sci Process Impacts; 2018 Dec; 20(12):1691-1696. PubMed ID: 30283955 [TBL] [Abstract][Full Text] [Related]
12. Immobilization mechanism of antimony by applying zirconium-manganese oxide in soil. Rong Q; Nong X; Zhang C; Zhong K; Zhao H Sci Total Environ; 2022 Jun; 823():153435. PubMed ID: 35092780 [TBL] [Abstract][Full Text] [Related]
13. [Effects of Mn(III) on oxidation of Cr(III) with birnessites]. Tan JF; Qiu GH; Liu F; Tan WF; Feng XH Huan Jing Ke Xue; 2009 Sep; 30(9):2779-85. PubMed ID: 19927840 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of Fe-doped birnessite with tunable electron spin magnetic moments for the degradation of tetracycline under microwave irradiation. Gu W; Lv G; Liao L; Yang C; Liu H; Nebendahl I; Li Z J Hazard Mater; 2017 Sep; 338():428-436. PubMed ID: 28595157 [TBL] [Abstract][Full Text] [Related]
15. Antimony oxidation and adsorption by in-situ formed biogenic Mn oxide and Fe-Mn oxides. Bai Y; Jefferson WA; Liang J; Yang T; Qu J J Environ Sci (China); 2017 Apr; 54():126-134. PubMed ID: 28391920 [TBL] [Abstract][Full Text] [Related]
16. Fast and efficient remediation of antimony-contaminated surface water and field soil using alumina supported Fe-Mn binary oxide. Gong Y; Bai Y; Ye P; Li H Chemosphere; 2024 Sep; 364():143165. PubMed ID: 39181457 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous oxidation and removal of Sb(III) from water by using synthesized CTAB/MnFe Yao S; Zhu X; Wang Y; Zhang D; Wang S; Jia Y Chemosphere; 2020 Apr; 245():125601. PubMed ID: 31862553 [TBL] [Abstract][Full Text] [Related]
18. Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure. Guo X; Wu Z; He M; Meng X; Jin X; Qiu N; Zhang J J Hazard Mater; 2014 Jul; 276():339-45. PubMed ID: 24910911 [TBL] [Abstract][Full Text] [Related]
19. Efficient removal of antimonate and antimonite by a novel lanthanum-manganese binary oxide: Performance and mechanism. Zhang C; Wu M; Wu K; Li H; Zhang G J Hazard Mater; 2023 Jan; 442():130132. PubMed ID: 36303357 [TBL] [Abstract][Full Text] [Related]
20. Induced transformation of antimony trioxide by Mn(II) oxidation and their co-transformed mechanism. Lv Y; Zhang C; Nan C; Fan Z; Huang S J Environ Sci (China); 2023 Jul; 129():69-78. PubMed ID: 36804243 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]