These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30974405)

  • 21. Physiological controls of chrysanthemum DgD27 gene expression in regulation of shoot branching.
    Wen C; Zhao Q; Nie J; Liu G; Shen L; Cheng C; Xi L; Ma N; Zhao L
    Plant Cell Rep; 2016 May; 35(5):1053-70. PubMed ID: 26883225
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endogenous auxin determines the pattern of adventitious shoot formation on internodal segments of ipecac.
    Koike I; Watanabe S; Okazaki K; Hayashi KI; Kasahara H; Shimomura K; Umehara M
    Planta; 2020 Mar; 251(3):73. PubMed ID: 32140780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An HD-ZIP transcription factor, MxHB13, integrates auxin-regulated and juvenility-determined control of adventitious rooting in Malus xiaojinensis.
    Li X; Shen F; Xu X; Zheng Q; Wang Y; Wu T; Li W; Qiu C; Xu X; Han Z; Zhang X
    Plant J; 2021 Sep; 107(6):1663-1680. PubMed ID: 34218490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comprehensive phylogeny of auxin homeostasis genes involved in adventitious root formation in carnation stem cuttings.
    Sánchez-García AB; Ibáñez S; Cano A; Acosta M; Pérez-Pérez JM
    PLoS One; 2018; 13(4):e0196663. PubMed ID: 29709027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development.
    Sorin C; Negroni L; Balliau T; Corti H; Jacquemot MP; Davanture M; Sandberg G; Zivy M; Bellini C
    Plant Physiol; 2006 Jan; 140(1):349-64. PubMed ID: 16377752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptome Analysis Reveals that Red and Blue Light Regulate Growth and Phytohormone Metabolism in Norway Spruce [Picea abies (L.) Karst].
    OuYang F; Mao JF; Wang J; Zhang S; Li Y
    PLoS One; 2015; 10(8):e0127896. PubMed ID: 26237749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteomic changes in the base of chrysanthemum cuttings during adventitious root formation.
    Liu R; Chen S; Jiang J; Zhu L; Zheng C; Han S; Gu J; Sun J; Li H; Wang H; Song A; Chen F
    BMC Genomics; 2013 Dec; 14():919. PubMed ID: 24369042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developmental stages during the rooting of in-vitro-cultured Quercus robur shoots from material of juvenile and mature origin.
    Vidal N; Arellano G; San-José MC; Vieitez AM; Ballester A
    Tree Physiol; 2003 Dec; 23(18):1247-54. PubMed ID: 14652224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation.
    Ahkami AH; Melzer M; Ghaffari MR; Pollmann S; Ghorbani Javid M; Shahinnia F; Hajirezaei MR; Druege U
    Planta; 2013 Sep; 238(3):499-517. PubMed ID: 23765266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of 2,3,5-Triiodobenzoic Acid and 1-N-Naphthylphthalamic Acid on Indoleacetic Acid Transport in Carnation Cuttings: Relationship with Rooting.
    Guerrero JR; Garrido G; Acosta M; Sánchez-Bravo J
    J Plant Growth Regul; 1999 Dec; 18(4):183-190. PubMed ID: 10688708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of auxin homeostasis and response in nitrogen limitation and dark stimulation of adventitious root formation in petunia cuttings.
    Yang H; Klopotek Y; Hajirezaei MR; Zerche S; Franken P; Druege U
    Ann Bot; 2019 Nov; 124(6):1053-1066. PubMed ID: 31181150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteomic profiling of root system development proteins in chrysanthemum overexpressing the CmTCP20 gene.
    Fan HM; Liu BW; Ma FF; Sun X; Zheng CS
    Plant Sci; 2019 Oct; 287():110175. PubMed ID: 31481217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Auxin efflux carriers, MiPINs, are involved in adventitious root formation of mango cotyledon segments.
    Li YH; Mo YW; Wang SB; Zhang Z
    Plant Physiol Biochem; 2020 May; 150():15-26. PubMed ID: 32105796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Cutting propagation of Periploca forrestii and dynamic analyses of physiological and biochemical characteristitics related to adventitious roots formation].
    Gao J; Zeng XF; Liu XH; Yang SX
    Zhong Yao Cai; 2011 Jun; 34(6):841-5. PubMed ID: 22016997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Role of Light-Regulated Auxin Signaling in Root Development.
    Yun F; Liu H; Deng Y; Hou X; Liao W
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of auxin transporters and receptors in adventitious rooting of Arabidopsis thaliana pre-etiolated flooded seedlings.
    da Costa CT; Offringa R; Fett-Neto AG
    Plant Sci; 2020 Jan; 290():110294. PubMed ID: 31779904
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methane-rich water induces cucumber adventitious rooting through heme oxygenase1/carbon monoxide and Ca(2+) pathways.
    Cui W; Qi F; Zhang Y; Cao H; Zhang J; Wang R; Shen W
    Plant Cell Rep; 2015 Mar; 34(3):435-45. PubMed ID: 25503851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling.
    Qi X; Li Q; Ma X; Qian C; Wang H; Ren N; Shen C; Huang S; Xu X; Xu Q; Chen X
    Plant Cell Environ; 2019 May; 42(5):1458-1470. PubMed ID: 30556134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced Conjugation of Auxin by GH3 Enzymes Leads to Poor Adventitious Rooting in Carnation Stem Cuttings.
    Cano A; Sánchez-García AB; Albacete A; González-Bayón R; Justamante MS; Ibáñez S; Acosta M; Pérez-Pérez JM
    Front Plant Sci; 2018; 9():566. PubMed ID: 29755501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings.
    Zhang W; Fan J; Tan Q; Zhao M; Zhou T; Cao F
    PLoS One; 2017; 12(2):e0172320. PubMed ID: 28231330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.