These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 30974705)

  • 41. Poly(lactide-co-glycolide)/titania composite microsphere-sintered scaffolds for bone tissue engineering applications.
    Wang Y; Shi X; Ren L; Yao Y; Zhang F; Wang DA
    J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):84-92. PubMed ID: 20091906
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigation of Human Dental Pulp Cells on a Potential Injectable Poly(lactic-co-glycolic acid) Microsphere Scaffold.
    Zou H; Wang G; Song F; Shi X
    J Endod; 2017 May; 43(5):745-750. PubMed ID: 28292602
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation of PLGA scaffolds with graded pores by using a gelatin-microsphere template as porogen.
    Tang G; Zhang H; Zhao Y; Zhang Y; Li X; Yuan X
    J Biomater Sci Polym Ed; 2012; 23(17):2241-57. PubMed ID: 22137329
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A silk fibroin/chitosan/nanohydroxyapatite biomimetic bone scaffold combined with autologous concentrated growth factor promotes the proliferation and osteogenic differentiation of BMSCs and repair of critical bone defects.
    Zhou Y; Liu X; She H; Wang R; Bai F; Xiang B
    Regen Ther; 2022 Dec; 21():307-321. PubMed ID: 36110973
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of Magnetic Nanoparticle-Labeled Chondrocytes Cultivated on a Type II Collagen-Chitosan/Poly(Lactic-co-Glycolic) Acid Biphasic Scaffold.
    Su JY; Chen SH; Chen YP; Chen WC
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28054960
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cartilage Extracellular Matrix Scaffold With Kartogenin-Encapsulated PLGA Microspheres for Cartilage Regeneration.
    Zhao Y; Zhao X; Zhang R; Huang Y; Li Y; Shan M; Zhong X; Xing Y; Wang M; Zhang Y; Zhao Y
    Front Bioeng Biotechnol; 2020; 8():600103. PubMed ID: 33363129
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regeneration of hyaline-like cartilage and subchondral bone simultaneously by poly(l-glutamic acid) based osteochondral scaffolds with induced autologous adipose derived stem cells.
    Zhang K; He S; Yan S; Li G; Zhang D; Cui L; Yin J
    J Mater Chem B; 2016 Apr; 4(15):2628-2645. PubMed ID: 32263287
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering.
    Abdul Rahman R; Mohamad Sukri N; Md Nazir N; Ahmad Radzi MA; Zulkifly AH; Che Ahmad A; Hashi AA; Abdul Rahman S; Sha'ban M
    Tissue Cell; 2015 Aug; 47(4):420-30. PubMed ID: 26100682
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration.
    Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M
    Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhancing the function of PLGA-collagen scaffold by incorporating TGF-β1-loaded PLGA-PEG-PLGA nanoparticles for cartilage tissue engineering using human dental pulp stem cells.
    Ghandforoushan P; Hanaee J; Aghazadeh Z; Samiei M; Navali AM; Khatibi A; Davaran S
    Drug Deliv Transl Res; 2022 Dec; 12(12):2960-2978. PubMed ID: 35650332
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Production and Characterization of a Novel Bilayer Nanocomposite Scaffold Composed of Chitosan/Si-nHap and Zein/POSS Structures for Osteochondral Tissue Regeneration.
    Tamburaci S; Cecen B; Ustun O; Ergur BU; Havitcioglu H; Tihminlioglu F
    ACS Appl Bio Mater; 2019 Apr; 2(4):1440-1455. PubMed ID: 35026919
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A bioscaffold of decellularized whole osteochondral sheet improves proliferation and differentiation of loaded mesenchymal stem cells in a rabbit model.
    Taghiyar L; Asadi H; Baghaban Eslaminejad M
    Cell Tissue Bank; 2023 Dec; 24(4):711-724. PubMed ID: 36939962
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Articular cartilage tissue engineering based on a mechano-active scaffold made of poly(L-lactide-co-epsilon-caprolactone): In vivo performance in adult rabbits.
    Xie J; Han Z; Naito M; Maeyama A; Kim SH; Kim YH; Matsuda T
    J Biomed Mater Res B Appl Biomater; 2010 Jul; 94(1):80-8. PubMed ID: 20336738
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model.
    Dahlin RL; Kinard LA; Lam J; Needham CJ; Lu S; Kasper FK; Mikos AG
    Biomaterials; 2014 Aug; 35(26):7460-9. PubMed ID: 24927682
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Culturing primary human osteoblasts on electrospun poly(lactic-co-glycolic acid) and poly(lactic-co-glycolic acid)/nanohydroxyapatite scaffolds for bone tissue engineering.
    Li M; Liu W; Sun J; Xianyu Y; Wang J; Zhang W; Zheng W; Huang D; Di S; Long YZ; Jiang X
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):5921-6. PubMed ID: 23790233
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Storage and release of rare earth elements in microsphere-based scaffolds for enhancing osteogenesis.
    Xu W; Wei K; Lin Z; Wu T; Li G; Wang L
    Sci Rep; 2022 Apr; 12(1):6383. PubMed ID: 35430599
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ectopic bone formation by gel-derived bioactive glass-poly-L-lactide-co-glycolide composites in a rabbit muscle model.
    Filipowska J; Cholewa-Kowalska K; Wieczorek J; Semik D; Dąbrowski Z; Łączka M; Osyczka AM
    Biomed Mater; 2017 Jan; 12(1):015015. PubMed ID: 28094240
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D printed PLGA/MgO/PDA composite scaffold by low-temperature deposition manufacturing for bone tissue engineering applications.
    Tan L; Ye Z; Zhuang W; Mao B; Li H; Li X; Wu J; Sang H
    Regen Ther; 2023 Dec; 24():617-629. PubMed ID: 38034857
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced differentiation of human embryonic stem cells on extracellular matrix-containing osteomimetic scaffolds for bone tissue engineering.
    Rutledge K; Cheng Q; Pryzhkova M; Harris GM; Jabbarzadeh E
    Tissue Eng Part C Methods; 2014 Nov; 20(11):865-74. PubMed ID: 24634988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.