These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 30974705)
61. Cell-Laden 3D Printed GelMA/HAp and THA Hydrogel Bioinks: Development of Osteochondral Tissue-like Bioinks. Jahangir S; Vecstaudza J; Augurio A; Canciani E; Stipniece L; Locs J; Alini M; Serra T Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005143 [TBL] [Abstract][Full Text] [Related]
62. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds. Lai GJ; Shalumon KT; Chen JP Int J Nanomedicine; 2015; 10():567-84. PubMed ID: 25609962 [TBL] [Abstract][Full Text] [Related]
63. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds. Zong C; Qian X; Tang Z; Hu Q; Chen J; Gao C; Tang R; Tong X; Wang J J Biomed Nanotechnol; 2014 Jun; 10(6):1091-104. PubMed ID: 24749403 [TBL] [Abstract][Full Text] [Related]
64. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair. Wang J; Yang Q; Cheng N; Tao X; Zhang Z; Sun X; Zhang Q Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():705-11. PubMed ID: 26838900 [TBL] [Abstract][Full Text] [Related]
65. Apatite-coated poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for bone tissue engineering. Kang SW; Yang HS; Seo SW; Han DK; Kim BS J Biomed Mater Res A; 2008 Jun; 85(3):747-56. PubMed ID: 17896763 [TBL] [Abstract][Full Text] [Related]
66. Injectable, self-healing poly(amino acid)-hydrogel based on phenylboronate ester bond for osteochondral tissue engineering. Li G; Shi Z; Zong H; Zhang K; Yan S; Yin J Biomed Mater; 2023 Jul; 18(5):. PubMed ID: 37399811 [TBL] [Abstract][Full Text] [Related]
67. [Adhesion, proliferation and osteodifferentiation of bone mesenchymal stem cells on PLGA-[ASP-PEG] tri-bolck polymer scaffolds]. Duan ZX; Zheng QX; Guo XD; Bai Y; Yuan Q; Chen SG Zhongguo Gu Shang; 2008 Apr; 21(4):282-4. PubMed ID: 19102190 [TBL] [Abstract][Full Text] [Related]
68. In vitro osteogenic differentiation of human amniotic fluid-derived stem cells on a poly(lactide-co-glycolide) (PLGA)-bladder submucosa matrix (BSM) composite scaffold for bone tissue engineering. Kim J; Jeong SY; Ju YM; Yoo JJ; Smith TL; Khang G; Lee SJ; Atala A Biomed Mater; 2013 Feb; 8(1):014107. PubMed ID: 23353783 [TBL] [Abstract][Full Text] [Related]
69. Chondrogenesis from human placenta-derived mesenchymal stem cells in three-dimensional scaffolds for cartilage tissue engineering. Hsu SH; Huang TB; Cheng SJ; Weng SY; Tsai CL; Tseng CS; Chen DC; Liu TY; Fu KY; Yen BL Tissue Eng Part A; 2011 Jun; 17(11-12):1549-60. PubMed ID: 21284540 [TBL] [Abstract][Full Text] [Related]
70. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Oh SH; Kang SG; Kim ES; Cho SH; Lee JH Biomaterials; 2003 Oct; 24(22):4011-21. PubMed ID: 12834596 [TBL] [Abstract][Full Text] [Related]
71. Mesenchymal stem cell-loaded porous tantalum integrated with biomimetic 3D collagen-based scaffold to repair large osteochondral defects in goats. Wei X; Liu B; Liu G; Yang F; Cao F; Dou X; Yu W; Wang B; Zheng G; Cheng L; Ma Z; Zhang Y; Yang J; Wang Z; Li J; Cui D; Wang W; Xie H; Li L; Zhang F; Lineaweaver WC; Zhao D Stem Cell Res Ther; 2019 Mar; 10(1):72. PubMed ID: 30837004 [TBL] [Abstract][Full Text] [Related]
75. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix. Shen FH; Zeng Q; Lv Q; Choi L; Balian G; Li X; Laurencin CT Spine J; 2006; 6(6):615-23. PubMed ID: 17088192 [TBL] [Abstract][Full Text] [Related]
76. Biphasic Scaffolds from Marine Collagens for Regeneration of Osteochondral Defects. Bernhardt A; Paul B; Gelinsky M Mar Drugs; 2018 Mar; 16(3):. PubMed ID: 29534027 [TBL] [Abstract][Full Text] [Related]
77. [Preliminary study on chitosan/HAP bilayered scaffold]. Zhang H; Wang W; Chu D; Liu Y; Guan J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Nov; 22(11):1358-63. PubMed ID: 19068607 [TBL] [Abstract][Full Text] [Related]
78. A novel strategy of spine defect repair with a degradable bioactive scaffold preloaded with adipose-derived stromal cells. Liang H; Li X; Shimer AL; Balian G; Shen FH Spine J; 2014 Mar; 14(3):445-54. PubMed ID: 24360747 [TBL] [Abstract][Full Text] [Related]
79. Subcritical CO2 sintering of microspheres of different polymeric materials to fabricate scaffolds for tissue engineering. Bhamidipati M; Sridharan B; Scurto AM; Detamore MS Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4892-9. PubMed ID: 24094202 [TBL] [Abstract][Full Text] [Related]
80. Effect of Cyclic Dynamic Compressive Loading on Chondrocytes and Adipose-Derived Stem Cells Co-Cultured in Highly Elastic Cryogel Scaffolds. Chen CH; Kuo CY; Chen JP Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29373507 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]