These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 30974705)
81. Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering. Yang YL; Chang CH; Huang CC; Kao WM; Liu WC; Liu HW Biomed Mater Eng; 2014; 24(1):979-85. PubMed ID: 24211987 [TBL] [Abstract][Full Text] [Related]
83. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone). Jung Y; Park MS; Lee JW; Kim YH; Kim SH; Kim SH Biomaterials; 2008 Dec; 29(35):4630-6. PubMed ID: 18804279 [TBL] [Abstract][Full Text] [Related]
84. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. Shin HJ; Lee CH; Cho IH; Kim YJ; Lee YJ; Kim IA; Park KD; Yui N; Shin JW J Biomater Sci Polym Ed; 2006; 17(1-2):103-19. PubMed ID: 16411602 [TBL] [Abstract][Full Text] [Related]
85. Bacterial Inhibition and Osteogenic Potentials of Sr/Zn Co-Doped Nano-Hydroxyapatite-PLGA Composite Scaffold for Bone Tissue Engineering Applications. Hassan M; Khaleel A; Karam SM; Al-Marzouqi AH; Ur Rehman I; Mohsin S Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987151 [TBL] [Abstract][Full Text] [Related]
86. Intra-articular injection of N-acetylglucosamine and hyaluronic acid combined with PLGA scaffolds for osteochondral repair in rabbits. Wang HC; Lin YT; Lin TH; Chang NJ; Lin CC; Hsu HC; Yeh ML PLoS One; 2018; 13(12):e0209747. PubMed ID: 30596714 [TBL] [Abstract][Full Text] [Related]
87. Preparation of porous PLGA/Ti biphasic scaffold and osteochondral defect repair. Zhao C; Zhang H; Cai B; Wang G; Fan H; Zhang X Biomater Sci; 2013 Jul; 1(7):703-710. PubMed ID: 32481825 [TBL] [Abstract][Full Text] [Related]
88. A phosphate glass reinforced composite acrylamide gradient scaffold for osteochondral interface regeneration. Younus ZM; Ahmed I; Roach P; Forsyth NR Biomater Biosyst; 2024 Sep; 15():100099. PubMed ID: 39221155 [TBL] [Abstract][Full Text] [Related]
89. Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-Asp as tissue engineering scaffolding materials for cartilage regeneration. Hsu SH; Chang SH; Yen HJ; Whu SW; Tsai CL; Chen DC Artif Organs; 2006 Jan; 30(1):42-55. PubMed ID: 16409397 [TBL] [Abstract][Full Text] [Related]
90. Restoring Osteochondral Defects through the Differentiation Potential of Cartilage Stem/Progenitor Cells Cultivated on Porous Scaffolds. Wang HC; Lin TH; Hsu CC; Yeh ML Cells; 2021 Dec; 10(12):. PubMed ID: 34944042 [TBL] [Abstract][Full Text] [Related]
91. [Preparation and Li J; Zhang X; Guo Q; Zhang J; Cao Y; Zhang X; Huang J; Wang Q; Liu X; Hao C Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Apr; 32(4):434-440. PubMed ID: 29806301 [TBL] [Abstract][Full Text] [Related]
92. Novel nanocomposite scaffold based on gelatin/PLGA-PEG-PLGA hydrogels embedded with TGF-β1 for chondrogenic differentiation of human dental pulp stem cells in vitro. Ghandforoushan P; Hanaee J; Aghazadeh Z; Samiei M; Navali AM; Khatibi A; Davaran S Int J Biol Macromol; 2022 Mar; 201():270-287. PubMed ID: 34998887 [TBL] [Abstract][Full Text] [Related]
93. The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro. Li YH; Wang ZD; Wang W; Ding CW; Zhang HX; Li JM Exp Biol Med (Maywood); 2015 Nov; 240(11):1465-71. PubMed ID: 25877763 [TBL] [Abstract][Full Text] [Related]
94. Porous Scaffolds for Regeneration of Cartilage, Bone and Osteochondral Tissue. Chen G; Kawazoe N Adv Exp Med Biol; 2018; 1058():171-191. PubMed ID: 29691822 [TBL] [Abstract][Full Text] [Related]
95. Comparative, osteochondral defect repair: stem cells versus chondrocytes versus bone morphogenetic protein-2, solely or in combination. Reyes R; Pec MK; Sánchez E; del Rosario C; Delgado A; Évora C Eur Cell Mater; 2013 Jul; 25():351-65; discussion 365. PubMed ID: 23832688 [TBL] [Abstract][Full Text] [Related]
96. Enhancing the bioactivity of Poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model. Wang DX; He Y; Bi L; Qu ZH; Zou JW; Pan Z; Fan JJ; Chen L; Dong X; Liu XN; Pei GX; Ding JD Int J Nanomedicine; 2013; 8():1855-65. PubMed ID: 23690683 [TBL] [Abstract][Full Text] [Related]
97. Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques. Zhang T; Zhang H; Zhang L; Jia S; Liu J; Xiong Z; Sun W Biofabrication; 2017 May; 9(2):025021. PubMed ID: 28462906 [TBL] [Abstract][Full Text] [Related]
98. Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Zhang S; Chen L; Jiang Y; Cai Y; Xu G; Tong T; Zhang W; Wang L; Ji J; Shi P; Ouyang HW Acta Biomater; 2013 Jul; 9(7):7236-47. PubMed ID: 23567945 [TBL] [Abstract][Full Text] [Related]
99. Value of 3D Printed PLGA Scaffolds for Cartilage Defects in Terms of Repair. Fan L; Teng W; He J; Wang D; Liu C; Zhao Y; Zhang L Evid Based Complement Alternat Med; 2022; 2022():3561430. PubMed ID: 35966730 [TBL] [Abstract][Full Text] [Related]
100. Sustained release of naringin from silk-fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Zhao ZH; Ma XL; Ma JX; Kang JY; Zhang Y; Guo Y Mater Today Bio; 2022 Jan; 13():100206. PubMed ID: 35128373 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]