These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 30974877)

  • 1. MAPK/ERK Signaling in Regulation of Renal Differentiation.
    Kurtzeborn K; Kwon HN; Kuure S
    Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30974877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney.
    Fisher CE; Michael L; Barnett MW; Davies JA
    Development; 2001 Nov; 128(21):4329-38. PubMed ID: 11684667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative whole-genome transcriptome analysis in renal cell populations reveals high tissue specificity of MAPK/ERK targets in embryonic kidney.
    Kurtzeborn K; Kwon HN; Iaroshenko V; Faisal I; Ambrož M; Jin X; Qureshi T; Kupari J; Ihermann-Hella A; Väänänen J; Tyynismaa H; Boušová I; Park S; Kuure S
    BMC Biol; 2022 May; 20(1):112. PubMed ID: 35550069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Omics profiling identifies the regulatory functions of the MAPK/ERK pathway in nephron progenitor metabolism.
    Kwon HN; Kurtzeborn K; Iaroshenko V; Jin X; Loh A; Escande-Beillard N; Reversade B; Park S; Kuure S
    Development; 2022 Oct; 149(19):. PubMed ID: 36189831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal branching morphogenesis: morphogenetic and signaling mechanisms.
    Blake J; Rosenblum ND
    Semin Cell Dev Biol; 2014 Dec; 36():2-12. PubMed ID: 25080023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic MAPK/ERK Activity Sustains Nephron Progenitors through Niche Regulation and Primes Precursors for Differentiation.
    Ihermann-Hella A; Hirashima T; Kupari J; Kurtzeborn K; Li H; Kwon HN; Cebrian C; Soofi A; Dapkunas A; Miinalainen I; Dressler GR; Matsuda M; Kuure S
    Stem Cell Reports; 2018 Oct; 11(4):912-928. PubMed ID: 30220628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renin-angiotensin system in ureteric bud branching morphogenesis: implications for kidney disease.
    Yosypiv IV
    Pediatr Nephrol; 2014 Apr; 29(4):609-20. PubMed ID: 24061643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription Factor 21 Is Required for Branching Morphogenesis and Regulates the Gdnf-Axis in Kidney Development.
    Ide S; Finer G; Maezawa Y; Onay T; Souma T; Scott R; Ide K; Akimoto Y; Li C; Ye M; Zhao X; Baba Y; Minamizuka T; Jin J; Takemoto M; Yokote K; Quaggin SE
    J Am Soc Nephrol; 2018 Dec; 29(12):2795-2808. PubMed ID: 30377232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lung development requires an active ERK/MAPK pathway in the lung mesenchyme.
    Boucherat O; Landry-Truchon K; Aoidi R; Houde N; Nadeau V; Charron J; Jeannotte L
    Dev Dyn; 2017 Jan; 246(1):72-82. PubMed ID: 27748998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cessation of renal morphogenesis in mice.
    Hartman HA; Lai HL; Patterson LT
    Dev Biol; 2007 Oct; 310(2):379-87. PubMed ID: 17826763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ERK1,2 Signalling Pathway along the Nephron and Its Role in Acid-base and Electrolytes Balance.
    Capolongo G; Suzumoto Y; D'Acierno M; Simeoni M; Capasso G; Zacchia M
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31450703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osr1 Interacts Synergistically with Wt1 to Regulate Kidney Organogenesis.
    Xu J; Liu H; Chai OH; Lan Y; Jiang R
    PLoS One; 2016; 11(7):e0159597. PubMed ID: 27442016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. To bud or not to bud: the RET perspective in CAKUT.
    Davis TK; Hoshi M; Jain S
    Pediatr Nephrol; 2014 Apr; 29(4):597-608. PubMed ID: 24022366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maternal nutrient restriction inhibits ureteric bud branching but does not affect the duration of nephrogenesis in rats.
    Awazu M; Hida M
    Pediatr Res; 2015 May; 77(5):633-9. PubMed ID: 25675424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation.
    Horster MF; Braun GS; Huber SM
    Physiol Rev; 1999 Oct; 79(4):1157-91. PubMed ID: 10508232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Branching morphogenesis as a driver of renal development.
    Short KM; Smyth IM
    Anat Rec (Hoboken); 2020 Oct; 303(10):2578-2587. PubMed ID: 32790143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TGFbeta superfamily signals are required for morphogenesis of the kidney mesenchyme progenitor population.
    Oxburgh L; Chu GC; Michael SK; Robertson EJ
    Development; 2004 Sep; 131(18):4593-605. PubMed ID: 15342483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ASH2L Controls Ureteric Bud Morphogenesis through the Regulation of RET/GFRA1 Signaling Activity in a Mouse Model.
    Zhao Z; Dai X; Jiang G; Lin F
    J Am Soc Nephrol; 2023 Jun; 34(6):988-1002. PubMed ID: 36758123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expansion of the renal capsular stroma, ureteric bud branching defects and cryptorchidism in mice with Wilms tumor 1 gene deletion in the stromal compartment of the developing kidney.
    Weiss AC; Rivera-Reyes R; Englert C; Kispert A
    J Pathol; 2020 Nov; 252(3):290-303. PubMed ID: 32715478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic controls and cellular behaviors in branching morphogenesis of the renal collecting system.
    Costantini F
    Wiley Interdiscip Rev Dev Biol; 2012; 1(5):693-713. PubMed ID: 22942910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.