These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 30974938)

  • 1. Halide Ligands To Release Strain in Cadmium Chalcogenide Nanoplatelets and Achieve High Brightness.
    Dufour M; Qu J; Greboval C; Méthivier C; Lhuillier E; Ithurria S
    ACS Nano; 2019 May; 13(5):5326-5334. PubMed ID: 30974938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Modification of CdE (E: S, Se, and Te) Nanoplatelets to Reach Thicker Nanoplatelets and Homostructures with Confinement-Induced Intraparticle Type I Energy Level Alignment.
    Moghaddam N; Dabard C; Dufour M; Po H; Xu X; Pons T; Lhuillier E; Ithurria S
    J Am Chem Soc; 2021 Feb; 143(4):1863-1872. PubMed ID: 33471504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triethyl-Borates as Surfactants to Stabilize Semiconductor Nanoplatelets in Polar Solvents and to Tune Their Optical Properties.
    Deng Y; Chen X; Liang J; Wang Y
    Front Chem; 2022; 10():860781. PubMed ID: 35494634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
    Li Q; Lian T
    Acc Chem Res; 2019 Sep; 52(9):2684-2693. PubMed ID: 31433164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlating structural distortions and optical shifts in carboxylate-exchanged CdSe nanoplatelets.
    Peifer S; Wiscons RA; Olshansky JH
    J Chem Phys; 2023 Apr; 158(16):. PubMed ID: 37093146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Depletion Effects in Bromide-Ligated Colloidal Cadmium Selenide Nanoplatelets: Toward Efficient Emission at High Temperature.
    Zhang Z; Thung YT; Wang L; Chen X; Ding L; Fan W; Sun H
    J Phys Chem Lett; 2021 Sep; 12(37):9086-9093. PubMed ID: 34519516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Synthesis of Zinc-Blende ZnSe Nanoplatelets.
    Es MS; Colak E; Irfanoglu A; Kelestemur Y
    ACS Omega; 2024 Jun; 9(25):27438-27445. PubMed ID: 38947827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layer-by-Layer Deposition of 2D CdSe/CdS Nanoplatelets and Polymers for Photoluminescent Composite Materials.
    Li F; Klepzig LF; Keppler N; Behrens P; Bigall NC; Menzel H; Lauth J
    Langmuir; 2022 Sep; 38(37):11149-11159. PubMed ID: 36067458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sterically Controlled Synthesis of Amine-Free CsPbBr
    Chen D; Wang T; Kei Ko P; Shi J; Liu M; Halpert JE
    Angew Chem Int Ed Engl; 2024 Feb; 63(8):e202317590. PubMed ID: 38153600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dilution-Induced Formation of Hybrid Perovskite Nanoplatelets.
    Tong Y; Ehrat F; Vanderlinden W; Cardenas-Daw C; Stolarczyk JK; Polavarapu L; Urban AS
    ACS Nano; 2016 Dec; 10(12):10936-10944. PubMed ID: 28024369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral surface passivation of CdSe nanoplatelets through crown management.
    Liu H; Chen P; Zhang X; Wang X; He T; Chen R
    Nanoscale; 2023 Sep; 15(34):14140-14145. PubMed ID: 37584662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semiconductor Nanoplatelets: A New Class of Ultrabright Fluorescent Probes for Cytometric and Imaging Applications.
    Kechkeche D; Cao E; Grazon C; Caschera F; Noireaux V; Baron Niel ML; Dubertret B
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24739-24749. PubMed ID: 29920060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Stable, Near-Unity Efficiency Atomically Flat Semiconductor Nanocrystals of CdSe/ZnS Hetero-Nanoplatelets Enabled by ZnS-Shell Hot-Injection Growth.
    Altintas Y; Quliyeva U; Gungor K; Erdem O; Kelestemur Y; Mutlugun E; Kovalenko MV; Demir HV
    Small; 2019 Feb; 15(8):e1804854. PubMed ID: 30701687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of CdSe Nanoplatelets without Short-Chain Ligands: Implication for Their Growth Mechanisms.
    Jiang Y; Ojo WS; Mahler B; Xu X; Abécassis B; Dubertret B
    ACS Omega; 2018 Jun; 3(6):6199-6205. PubMed ID: 31458802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A strain-induced exciton transition energy shift in CdSe nanoplatelets: the impact of an organic ligand shell.
    Antanovich A; Achtstein AW; Matsukovich A; Prudnikau A; Bhaskar P; Gurin V; Molinari M; Artemyev M
    Nanoscale; 2017 Nov; 9(45):18042-18053. PubMed ID: 29131231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical Investigation of the Electronic Spectra of Cadmium Chalcogenide 2D Nanoplatelets.
    Nguyen KA; Pachter R; Day PN
    J Phys Chem A; 2022 Dec; 126(47):8818-8825. PubMed ID: 36383147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloride-Induced Thickness Control in CdSe Nanoplatelets.
    Christodoulou S; Climente JI; Planelles J; Brescia R; Prato M; Martín-García B; Khan AH; Moreels I
    Nano Lett; 2018 Oct; 18(10):6248-6254. PubMed ID: 30178676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-Unity Efficiency Energy Transfer from Colloidal Semiconductor Quantum Wells of CdSe/CdS Nanoplatelets to a Monolayer of MoS
    Taghipour N; Hernandez Martinez PL; Ozden A; Olutas M; Dede D; Gungor K; Erdem O; Perkgoz NK; Demir HV
    ACS Nano; 2018 Aug; 12(8):8547-8554. PubMed ID: 29965729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloidal
    Wang L; Xiang D; Gao K; Wang J; Wu K
    J Phys Chem Lett; 2021 Nov; 12(46):11259-11266. PubMed ID: 34766755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient deep-blue emitting CsPbBr
    Zhang X; Cui Y; Ye S; Lin Z; Li Y
    J Colloid Interface Sci; 2024 Aug; 668():68-76. PubMed ID: 38669997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.