These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin. Tam BM; Moritz OL J Neurosci; 2007 Aug; 27(34):9043-53. PubMed ID: 17715341 [TBL] [Abstract][Full Text] [Related]
4. Synchronized Photoactivation of T4K Rhodopsin Causes a Chromophore-Dependent Retinal Degeneration That Is Moderated by Interaction with Phototransduction Cascade Components. Tam BM; Burns P; Chiu CN; Moritz OL J Neurosci; 2024 Sep; 44(36):. PubMed ID: 39089885 [TBL] [Abstract][Full Text] [Related]
5. Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light. Zhang R; Oglesby E; Marsh-Armstrong N Exp Eye Res; 2008 Apr; 86(4):612-21. PubMed ID: 18291367 [TBL] [Abstract][Full Text] [Related]
6. A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern. Moritz OL; Tam BM; Papermaster DS; Nakayama T J Biol Chem; 2001 Jul; 276(30):28242-51. PubMed ID: 11350960 [TBL] [Abstract][Full Text] [Related]
7. Rhodopsin mutant P23H destabilizes rod photoreceptor disk membranes. Haeri M; Knox BE PLoS One; 2012; 7(1):e30101. PubMed ID: 22276148 [TBL] [Abstract][Full Text] [Related]
8. Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa. Tam BM; Moritz OL Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3234-41. PubMed ID: 16877386 [TBL] [Abstract][Full Text] [Related]
9. Dynamic in vivo quantification of rod photoreceptor degeneration using fluorescent reporter mouse models of retinitis pigmentosa. Orlans HO; Barnard AR; MacLaren RE Exp Eye Res; 2020 Jan; 190():107895. PubMed ID: 31816293 [TBL] [Abstract][Full Text] [Related]
10. Dysmorphic photoreceptors in a P23H mutant rhodopsin model of retinitis pigmentosa are metabolically active and capable of regenerating to reverse retinal degeneration. Lee DC; Vazquez-Chona FR; Ferrell WD; Tam BM; Jones BW; Marc RE; Moritz OL J Neurosci; 2012 Feb; 32(6):2121-8. PubMed ID: 22323724 [TBL] [Abstract][Full Text] [Related]
11. The severe autosomal dominant retinitis pigmentosa rhodopsin mutant Ter349Glu mislocalizes and induces rapid rod cell death. Hollingsworth TJ; Gross AK J Biol Chem; 2013 Oct; 288(40):29047-55. PubMed ID: 23940033 [TBL] [Abstract][Full Text] [Related]
12. Retinal degeneration in humanized mice expressing mutant rhodopsin under the control of the endogenous murine promoter. Liu X; Jia R; Meng X; Li Y; Yang L Exp Eye Res; 2022 Feb; 215():108893. PubMed ID: 34919893 [TBL] [Abstract][Full Text] [Related]
13. Disrupted Plasma Membrane Protein Homeostasis in a Ropelewski P; Imanishi Y J Neurosci; 2019 Jul; 39(28):5581-5593. PubMed ID: 31061086 [TBL] [Abstract][Full Text] [Related]
14. Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic Vent-Schmidt RYJ; Wen RH; Zong Z; Chiu CN; Tam BM; May CG; Moritz OL J Neurosci; 2017 Jan; 37(4):1039-1054. PubMed ID: 28490005 [TBL] [Abstract][Full Text] [Related]
15. P23H opsin knock-in mice reveal a novel step in retinal rod disc morphogenesis. Sakami S; Kolesnikov AV; Kefalov VJ; Palczewski K Hum Mol Genet; 2014 Apr; 23(7):1723-41. PubMed ID: 24214395 [TBL] [Abstract][Full Text] [Related]
16. ATF6 is required for efficient rhodopsin clearance and retinal homeostasis in the P23H rho retinitis pigmentosa mouse model. Lee EJ; Chan P; Chea L; Kim K; Kaufman RJ; Lin JH Sci Rep; 2021 Aug; 11(1):16356. PubMed ID: 34381136 [TBL] [Abstract][Full Text] [Related]
17. Electrophysiological Changes During Early Steps of Retinitis Pigmentosa. Bocchero U; Tam BM; Chiu CN; Torre V; Moritz OL Invest Ophthalmol Vis Sci; 2019 Mar; 60(4):933-943. PubMed ID: 30840038 [TBL] [Abstract][Full Text] [Related]
18. A diffusible factor from normal retinal cells promotes rod photoreceptor survival in an in vitro model of retinitis pigmentosa. Streichert LC; Birnbach CD; Reh TA J Neurobiol; 1999 Jun; 39(4):475-90. PubMed ID: 10380070 [TBL] [Abstract][Full Text] [Related]
19. The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa. Parfitt DA; Aguila M; McCulley CH; Bevilacqua D; Mendes HF; Athanasiou D; Novoselov SS; Kanuga N; Munro PM; Coffey PJ; Kalmar B; Greensmith L; Cheetham ME Cell Death Dis; 2014 May; 5(5):e1236. PubMed ID: 24853414 [TBL] [Abstract][Full Text] [Related]
20. Dark noise and retinal degeneration from D190N-rhodopsin. Silverman D; Chai Z; Yue WWS; Ramisetty SK; Bekshe Lokappa S; Sakai K; Frederiksen R; Bina P; Tsang SH; Yamashita T; Chen J; Yau KW Proc Natl Acad Sci U S A; 2020 Sep; 117(37):23033-23043. PubMed ID: 32873651 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]