These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

547 related articles for article (PubMed ID: 30975014)

  • 41. Flavonoids improve the stability and function of P23H rhodopsin slowing down the progression of retinitis pigmentosa in mice.
    Ortega JT; Parmar T; Carmena-Bargueño M; Pérez-Sánchez H; Jastrzebska B
    J Neurosci Res; 2022 Apr; 100(4):1063-1083. PubMed ID: 35165923
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Opsin localization and rhodopsin photochemistry in a transgenic mouse model of retinitis pigmentosa.
    Wu TH; Ting TD; Okajima TI; Pepperberg DR; Ho YK; Ripps H; Naash MI
    Neuroscience; 1998 Dec; 87(3):709-17. PubMed ID: 9758235
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inherent instability of the retinitis pigmentosa P23H mutant opsin.
    Chen Y; Jastrzebska B; Cao P; Zhang J; Wang B; Sun W; Yuan Y; Feng Z; Palczewski K
    J Biol Chem; 2014 Mar; 289(13):9288-303. PubMed ID: 24515108
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stable rhodopsin/arrestin complex leads to retinal degeneration in a transgenic mouse model of autosomal dominant retinitis pigmentosa.
    Chen J; Shi G; Concepcion FA; Xie G; Oprian D; Chen J
    J Neurosci; 2006 Nov; 26(46):11929-37. PubMed ID: 17108167
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bax-induced apoptosis in Leber's congenital amaurosis: a dual role in rod and cone degeneration.
    Hamann S; Schorderet DF; Cottet S
    PLoS One; 2009 Aug; 4(8):e6616. PubMed ID: 19672311
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pharmacological clearance of misfolded rhodopsin for the treatment of RHO-associated retinitis pigmentosa.
    Liu X; Feng B; Vats A; Tang H; Seibel W; Swaroop M; Tawa G; Zheng W; Byrne L; Schurdak M; Chen Y
    FASEB J; 2020 Aug; 34(8):10146-10167. PubMed ID: 32536017
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CRISPR/Cas9-Mediated Models of Retinitis Pigmentosa Reveal Differential Proliferative Response of Müller Cells between
    Parain K; Lourdel S; Donval A; Chesneau A; Borday C; Bronchain O; Locker M; Perron M
    Cells; 2022 Feb; 11(5):. PubMed ID: 35269429
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transport of truncated rhodopsin and its effects on rod function and degeneration.
    Lee ES; Flannery JG
    Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2868-76. PubMed ID: 17525223
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78.
    Gorbatyuk MS; Knox T; LaVail MM; Gorbatyuk OS; Noorwez SM; Hauswirth WW; Lin JH; Muzyczka N; Lewin AS
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):5961-6. PubMed ID: 20231467
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery.
    Giannelli SG; Luoni M; Castoldi V; Massimino L; Cabassi T; Angeloni D; Demontis GC; Leocani L; Andreazzoli M; Broccoli V
    Hum Mol Genet; 2018 Mar; 27(5):761-779. PubMed ID: 29281027
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling Dominant and Recessive Forms of Retinitis Pigmentosa by Editing Three Rhodopsin-Encoding Genes in Xenopus Laevis Using Crispr/Cas9.
    Feehan JM; Chiu CN; Stanar P; Tam BM; Ahmed SN; Moritz OL
    Sci Rep; 2017 Jul; 7(1):6920. PubMed ID: 28761125
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Retinal histopathology in eyes from patients with autosomal dominant retinitis pigmentosa caused by rhodopsin mutations.
    Bonilha VL; Rayborn ME; Bell BA; Marino MJ; Beight CD; Pauer GJ; Traboulsi EI; Hollyfield JG; Hagstrom SA
    Graefes Arch Clin Exp Ophthalmol; 2015 Dec; 253(12):2161-9. PubMed ID: 26202387
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cone survival despite rod degeneration in XOPS-mCFP transgenic zebrafish.
    Morris AC; Schroeter EH; Bilotta J; Wong RO; Fadool JM
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4762-71. PubMed ID: 16303977
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(4):257R-264R. PubMed ID: 12511087
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Therapeutic potential of archaeal unfoldase PANet and the gateless T20S proteasome in P23H rhodopsin retinitis pigmentosa mice.
    Brooks C; Kolson D; Sechrest E; Chuah J; Schupp J; Billington N; Deng WT; Smith D; Sokolov M
    PLoS One; 2024; 19(10):e0308058. PubMed ID: 39361629
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Filtration of Short-Wavelength Light Provides Therapeutic Benefit in Retinitis Pigmentosa Caused by a Common Rhodopsin Mutation.
    Orlans HO; Merrill J; Barnard AR; Charbel Issa P; Peirson SN; MacLaren RE
    Invest Ophthalmol Vis Sci; 2019 Jun; 60(7):2733-2742. PubMed ID: 31247114
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration.
    Athanasiou D; Aguila M; Opefi CA; South K; Bellingham J; Bevilacqua D; Munro PM; Kanuga N; Mackenzie FE; Dubis AM; Georgiadis A; Graca AB; Pearson RA; Ali RR; Sakami S; Palczewski K; Sherman MY; Reeves PJ; Cheetham ME
    Hum Mol Genet; 2017 Jan; 26(2):305-319. PubMed ID: 28065882
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lentiviral gene transfer of RPE65 rescues survival and function of cones in a mouse model of Leber congenital amaurosis.
    Bemelmans AP; Kostic C; Crippa SV; Hauswirth WW; Lem J; Munier FL; Seeliger MW; Wenzel A; Arsenijevic Y
    PLoS Med; 2006 Oct; 3(10):e347. PubMed ID: 17032058
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transgenic zebrafish expressing mutant human RETGC-1 exhibit aberrant cone and rod morphology.
    Collery RF; Cederlund ML; Kennedy BN
    Exp Eye Res; 2013 Mar; 108():120-8. PubMed ID: 23328348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.