These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30975420)

  • 1. Thermal acclimation of flies from three populations of Drosophila melanogaster fails to support the seasonality hypothesis.
    Angilletta MJ; Condon C; Youngblood JP
    J Therm Biol; 2019 Apr; 81():25-32. PubMed ID: 30975420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acclimation of thermal physiology in natural populations of Drosophila melanogaster : a test of an optimality model.
    Cooper BS; Czarnoleski M; Angilletta MJ
    J Evol Biol; 2010 Nov; 23(11):2346-55. PubMed ID: 20825540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproductive fitness of
    Klepsatel P; Girish TN; Dircksen H; Gáliková M
    J Exp Biol; 2019 May; 222(Pt 10):. PubMed ID: 31064855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster.
    Schou MF; Loeschcke V; Kristensen TN
    PLoS One; 2015; 10(6):e0130307. PubMed ID: 26075607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In a variable thermal environment selection favors greater plasticity of cell membranes in Drosophila melanogaster.
    Cooper BS; Hammad LA; Fisher NP; Karty JA; Montooth KL
    Evolution; 2012 Jun; 66(6):1976-84. PubMed ID: 22671561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental thermal plasticity among Drosophila melanogaster populations.
    Fallis LC; Fanara JJ; Morgan TJ
    J Evol Biol; 2014 Mar; 27(3):557-64. PubMed ID: 26230171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beneficial developmental acclimation in reproductive performance under cold but not heat stress.
    Simões P; Santos MA; Carromeu-Santos A; Quina AS; Santos M; Matos M
    J Therm Biol; 2020 May; 90():102580. PubMed ID: 32479384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster.
    Overgaard J; Tomcala A; Sørensen JG; Holmstrup M; Krogh PH; Simek P; Kostál V
    J Insect Physiol; 2008 Mar; 54(3):619-29. PubMed ID: 18280492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversibility of developmental heat and cold plasticity is asymmetric and has long-lasting consequences for adult thermal tolerance.
    Slotsbo S; Schou MF; Kristensen TN; Loeschcke V; Sørensen JG
    J Exp Biol; 2016 Sep; 219(Pt 17):2726-32. PubMed ID: 27353229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental temperature affects thermal dependence of locomotor activity in Drosophila.
    Klepsatel P; Gáliková M
    J Therm Biol; 2022 Jan; 103():103153. PubMed ID: 35027204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical thermal limits affected differently by developmental and adult thermal fluctuations.
    Salachan PV; Sørensen JG
    J Exp Biol; 2017 Dec; 220(Pt 23):4471-4478. PubMed ID: 28982965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal adaptation of cellular membranes in natural populations of
    Cooper BS; Hammad LA; Montooth KL
    Funct Ecol; 2014 Aug; 28(4):886-894. PubMed ID: 25382893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary salt supplementation adversely affects thermal acclimation responses of flight ability in Drosophila melanogaster.
    Huisamen EJ; Colinet H; Karsten M; Terblanche JS
    J Insect Physiol; 2022 Jul; 140():104403. PubMed ID: 35667397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CHROMOSOMAL ANALYSIS OF HEAT-SHOCK TOLERANCE IN DROSOPHILA MELANOGASTER EVOLVING AT DIFFERENT TEMPERATURES IN THE LABORATORY.
    Cavicchi S; Guerra D; Torre V; Huey RB
    Evolution; 1995 Aug; 49(4):676-684. PubMed ID: 28565130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locomotor performance of Drosophila melanogaster: interactions among developmental and adult temperatures, age, and geography.
    Gibert P; Huey RB; Gilchrist GW
    Evolution; 2001 Jan; 55(1):205-9. PubMed ID: 11263741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal variation favors the evolution of generalists in experimental populations of Drosophila melanogaster.
    Condon C; Cooper BS; Yeaman S; Angilletta MJ
    Evolution; 2014 Mar; 68(3):720-8. PubMed ID: 24152128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation.
    Gerken AR; Eller OC; Hahn DA; Morgan TJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4399-404. PubMed ID: 25805817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology.
    Frazier MR; Harrison JF; Kirkton SD; Roberts SP
    J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal plasticity in Drosophila melanogaster: a comparison of geographic populations.
    Trotta V; Calboli FC; Ziosi M; Guerra D; Pezzoli MC; David JR; Cavicchi S
    BMC Evol Biol; 2006 Aug; 6():67. PubMed ID: 16942614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colder environments did not select for a faster metabolism during experimental evolution of Drosophila melanogaster.
    Alton LA; Condon C; White CR; Angilletta MJ
    Evolution; 2017 Jan; 71(1):145-152. PubMed ID: 27757954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.