BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 30975459)

  • 21. Reconstitution and biochemical characterization of the RNA-guided helicase-nuclease protein Cas3 from type I-A CRISPR-Cas system.
    Hu C; Ke A
    Methods Enzymol; 2022; 673():405-424. PubMed ID: 35965014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production of Purified CasRNPs for Efficacious Genome Editing.
    Lingeman E; Jeans C; Corn JE
    Curr Protoc Mol Biol; 2017 Oct; 120():31.10.1-31.10.19. PubMed ID: 28967993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR-Cas3 induces broad and unidirectional genome editing in human cells.
    Morisaka H; Yoshimi K; Okuzaki Y; Gee P; Kunihiro Y; Sonpho E; Xu H; Sasakawa N; Naito Y; Nakada S; Yamamoto T; Sano S; Hotta A; Takeda J; Mashimo T
    Nat Commun; 2019 Dec; 10(1):5302. PubMed ID: 31811138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans.
    Paix A; Folkmann A; Seydoux G
    Methods; 2017 May; 121-122():86-93. PubMed ID: 28392263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration.
    Klompe SE; Vo PLH; Halpin-Healy TS; Sternberg SH
    Nature; 2019 Jul; 571(7764):219-225. PubMed ID: 31189177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeted Genome Editing Using DNA-Free RNA-Guided Cas9 Ribonucleoprotein for CHO Cell Engineering.
    Shin J; Lee N; Cho S; Cho BK
    Methods Mol Biol; 2018; 1772():151-169. PubMed ID: 29754227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA-Free Genome Editing via Ribonucleoprotein (RNP) Delivery of CRISPR/Cas in Lettuce.
    Park J; Choi S; Park S; Yoon J; Park AY; Choe S
    Methods Mol Biol; 2019; 1917():337-354. PubMed ID: 30610648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protocol for assessment of the efficiency of CRISPR/Cas RNP delivery to different types of target cells.
    Tyumentseva MA; Tyumentsev AI; Akimkin VG
    PLoS One; 2021; 16(11):e0259812. PubMed ID: 34752487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Versatile modification of the CRISPR/Cas9 ribonucleoprotein system to facilitate in vivo application.
    Sun B; Chen H; Gao X
    J Control Release; 2021 Sep; 337():698-717. PubMed ID: 34364918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance.
    Pausch P; Müller-Esparza H; Gleditzsch D; Altegoer F; Randau L; Bange G
    Mol Cell; 2017 Aug; 67(4):622-632.e4. PubMed ID: 28781236
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Precision genome editing in the CRISPR era.
    Salsman J; Dellaire G
    Biochem Cell Biol; 2017 Apr; 95(2):187-201. PubMed ID: 28177771
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome editing using the endogenous type I CRISPR-Cas system in
    Hidalgo-Cantabrana C; Goh YJ; Pan M; Sanozky-Dawes R; Barrangou R
    Proc Natl Acad Sci U S A; 2019 Aug; 116(32):15774-15783. PubMed ID: 31341082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SliceIt: A genome-wide resource and visualization tool to design CRISPR/Cas9 screens for editing protein-RNA interaction sites in the human genome.
    Vemuri S; Srivastava R; Mir Q; Hashemikhabir S; Dong XC; Janga SC
    Methods; 2020 Jun; 178():104-113. PubMed ID: 31494246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Genome editing in plants directed by CRISPR/Cas ribonucleoprotein complexes].
    Li X; Shi W; Geng LZ; Xu JP
    Yi Chuan; 2020 Jun; 42(6):556-564. PubMed ID: 32694114
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene Disruption Using Chemically Modified CRISPR-Cpf1 RNA.
    McMahon MA; Rahdar M
    Methods Mol Biol; 2021; 2162():49-60. PubMed ID: 32926377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient Multi-Allelic Genome Editing of Primary Cell Cultures via CRISPR-Cas9 Ribonucleoprotein Nucleofection.
    Hoellerbauer P; Kufeld M; Paddison PJ
    Curr Protoc Stem Cell Biol; 2020 Sep; 54(1):e126. PubMed ID: 32833346
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electroporation of AsCpf1/RNP at the Zygote Stage is an Efficient Genome Editing Method to Generate Knock-Out Mice Deficient in Leukemia Inhibitory Factor.
    Kim YS; Kim GR; Park M; Yang SC; Park SH; Won JE; Lee JH; Shin HE; Song H; Kim HR
    Tissue Eng Regen Med; 2020 Feb; 17(1):45-53. PubMed ID: 32002841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimized electroporation of CRISPR-Cas9/gRNA ribonucleoprotein complex for selection-free homologous recombination in human pluripotent stem cells.
    Xu H; Kita Y; Bang U; Gee P; Hotta A
    STAR Protoc; 2021 Dec; 2(4):100965. PubMed ID: 34825222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deletion and replacement of long genomic sequences using prime editing.
    Jiang T; Zhang XO; Weng Z; Xue W
    Nat Biotechnol; 2022 Feb; 40(2):227-234. PubMed ID: 34650270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Double nicking by RNA-directed Cascade-nCas3 for high-efficiency large-scale genome engineering.
    Hao Y; Wang Q; Li J; Yang S; Zheng Y; Peng W
    Open Biol; 2022 Jan; 12(1):210241. PubMed ID: 35016549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.