BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30975744)

  • 1. Intrinsically cell-penetrating multivalent and multitargeting ligands for myotonic dystrophy type 1.
    Lee J; Bai Y; Chembazhi UV; Peng S; Yum K; Luu LM; Hagler LD; Serrano JF; Chan HYE; Kalsotra A; Zimmerman SC
    Proc Natl Acad Sci U S A; 2019 Apr; 116(18):8709-8714. PubMed ID: 30975744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational design of ligands targeting triplet repeating transcripts that cause RNA dominant disease: application to myotonic muscular dystrophy type 1 and spinocerebellar ataxia type 3.
    Pushechnikov A; Lee MM; Childs-Disney JL; Sobczak K; French JM; Thornton CA; Disney MD
    J Am Chem Soc; 2009 Jul; 131(28):9767-79. PubMed ID: 19552411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating Display and Delivery Functionality with a Cell Penetrating Peptide Mimic as a Scaffold for Intracellular Multivalent Multitargeting.
    Bai Y; Nguyen L; Song Z; Peng S; Lee J; Zheng N; Kapoor I; Hagler LD; Cai K; Cheng J; Chan HY; Zimmerman SC
    J Am Chem Soc; 2016 Aug; 138(30):9498-507. PubMed ID: 27355522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Potent Inhibitor of Protein Sequestration by Expanded Triplet (CUG) Repeats that Shows Phenotypic Improvements in a Drosophila Model of Myotonic Dystrophy.
    Luu LM; Nguyen L; Peng S; Lee J; Lee HY; Wong CH; Hergenrother PJ; Chan HY; Zimmerman SC
    ChemMedChem; 2016 Jul; 11(13):1428-35. PubMed ID: 27245480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico discovery of substituted pyrido[2,3-d]pyrimidines and pentamidine-like compounds with biological activity in myotonic dystrophy models.
    González ÀL; Konieczny P; Llamusi B; Delgado-Pinar E; Borrell JI; Teixidó J; García-España E; Pérez-Alonso M; Estrada-Tejedor R; Artero R
    PLoS One; 2017; 12(6):e0178931. PubMed ID: 28582438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective and Reversible Ligand Assembly on the DNA and RNA Repeat Sequences in Myotonic Dystrophy.
    Krueger SB; Lanzendorf AN; Jeon HH; Zimmerman SC
    Chembiochem; 2022 Sep; 23(17):e202200260. PubMed ID: 35790065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rationally designed small molecules that target both the DNA and RNA causing myotonic dystrophy type 1.
    Nguyen L; Luu LM; Peng S; Serrano JF; Chan HY; Zimmerman SC
    J Am Chem Soc; 2015 Nov; 137(44):14180-9. PubMed ID: 26473464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Minor Groove Binder as a Potential Therapeutic Agent for Myotonic Dystrophy Type 1.
    Li K; Krueger SB; Zimmerman SC
    ChemMedChem; 2021 Sep; 16(17):2638-2644. PubMed ID: 34114350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Furamidine Rescues Myotonic Dystrophy Type I Associated Mis-Splicing through Multiple Mechanisms.
    Jenquin JR; Coonrod LA; Silverglate QA; Pellitier NA; Hale MA; Xia G; Nakamori M; Berglund JA
    ACS Chem Biol; 2018 Sep; 13(9):2708-2718. PubMed ID: 30118588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of flexibility in the rational design of modularly assembled ligands targeting the RNAs that cause the myotonic dystrophies.
    Disney MD; Lee MM; Pushechnikov A; Childs-Disney JL
    Chembiochem; 2010 Feb; 11(3):375-82. PubMed ID: 20058255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel proteins with binding specificity for DNA CTG repeats and RNA CUG repeats: implications for myotonic dystrophy.
    Timchenko LT; Timchenko NA; Caskey CT; Roberts R
    Hum Mol Genet; 1996 Jan; 5(1):115-21. PubMed ID: 8789448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A flow cytometry-based screen identifies MBNL1 modulators that rescue splicing defects in myotonic dystrophy type I.
    Zhang F; Bodycombe NE; Haskell KM; Sun YL; Wang ET; Morris CA; Jones LH; Wood LD; Pletcher MT
    Hum Mol Genet; 2017 Aug; 26(16):3056-3068. PubMed ID: 28535287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1.
    de Haro M; Al-Ramahi I; De Gouyon B; Ukani L; Rosa A; Faustino NA; Ashizawa T; Cooper TA; Botas J
    Hum Mol Genet; 2006 Jul; 15(13):2138-45. PubMed ID: 16723374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the binding mode of an inhibitor of the MBNL1·RNA complex in myotonic dystrophy type 1 (DM1) leads to the unexpected discovery of a DNA-selective binder.
    Wong CH; Richardson SL; Ho YJ; Lucas AM; Tuccinardi T; Baranger AM; Zimmerman SC
    Chembiochem; 2012 Nov; 13(17):2505-9. PubMed ID: 23097190
    [No Abstract]   [Full Text] [Related]  

  • 15. A Ligand That Targets CUG Trinucleotide Repeats.
    Li J; Matsumoto J; Bai LP; Murata A; Dohno C; Nakatani K
    Chemistry; 2016 Oct; 22(42):14881-14889. PubMed ID: 27573860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systemic delivery of a Peptide-linked morpholino oligonucleotide neutralizes mutant RNA toxicity in a mouse model of myotonic dystrophy.
    Leger AJ; Mosquea LM; Clayton NP; Wu IH; Weeden T; Nelson CA; Phillips L; Roberts E; Piepenhagen PA; Cheng SH; Wentworth BM
    Nucleic Acid Ther; 2013 Apr; 23(2):109-17. PubMed ID: 23308382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Dimeric 2,9-Diamino-1,10-phenanthroline Derivative Improves Alternative Splicing in Myotonic Dystrophy Type 1 Cell and Mouse Models.
    Li J; Nakamori M; Matsumoto J; Murata A; Dohno C; Kiliszek A; Taylor K; Sobczak K; Nakatani K
    Chemistry; 2018 Dec; 24(68):18115-18122. PubMed ID: 30302858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of pharmacophore models for small molecules targeting RNA: Application to the RNA repeat expansion in myotonic dystrophy type 1.
    Angelbello AJ; González ÀL; Rzuczek SG; Disney MD
    Bioorg Med Chem Lett; 2016 Dec; 26(23):5792-5796. PubMed ID: 27839685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins.
    van den Broek WJ; Nelen MR; Wansink DG; Coerwinkel MM; te Riele H; Groenen PJ; Wieringa B
    Hum Mol Genet; 2002 Jan; 11(2):191-8. PubMed ID: 11809728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery in the Myogenic Program of Congenital Myotonic Dystrophy Myoblasts after Excision of the Expanded (CTG)
    André LM; van Cruchten RTP; Willemse M; Bezstarosti K; Demmers JAA; van Agtmaal EL; Wansink DG; Wieringa B
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31766224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.