BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 30976326)

  • 1. Tracking of enzymatic biomass deconstruction by fungal secretomes highlights markers of lignocellulose recalcitrance.
    Paës G; Navarro D; Benoit Y; Blanquet S; Chabbert B; Chaussepied B; Coutinho PM; Durand S; Grigoriev IV; Haon M; Heux L; Launay C; Margeot A; Nishiyama Y; Raouche S; Rosso MN; Bonnin E; Berrin JG
    Biotechnol Biofuels; 2019; 12():76. PubMed ID: 30976326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalis involves successive secretion of oxidative and hydrolytic enzymes.
    Navarro D; Rosso MN; Haon M; Olivé C; Bonnin E; Lesage-Meessen L; Chevret D; Coutinho PM; Henrissat B; Berrin JG
    Biotechnol Biofuels; 2014; 7(1):143. PubMed ID: 25320637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance.
    Herbaut M; Zoghlami A; Habrant A; Falourd X; Foucat L; Chabbert B; Paës G
    Biotechnol Biofuels; 2018; 11():52. PubMed ID: 29492107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive study of the promoting effect of manganese on white rot fungal treatment for enzymatic hydrolysis of woody and grass lignocellulose.
    Fu X; Zhang J; Gu X; Yu H; Chen S
    Biotechnol Biofuels; 2021 Sep; 14(1):176. PubMed ID: 34488855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis.
    Couturier M; Navarro D; Olivé C; Chevret D; Haon M; Favel A; Lesage-Meessen L; Henrissat B; Coutinho PM; Berrin JG
    BMC Genomics; 2012 Feb; 13():57. PubMed ID: 22300648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the fermentable sugar yields of wheat straw by high-temperature pre-hydrolysis with thermophilic enzymes of Malbranchea cinnamomea.
    Zhu N; Jin H; Kong X; Zhu Y; Ye X; Xi Y; Du J; Li B; Lou M; Shah GM
    Microb Cell Fact; 2020 Jul; 19(1):149. PubMed ID: 32711527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic Hydrolysis of Lignocellulosic Biomass Using an Optimized Enzymatic Cocktail Prepared from Secretomes of Filamentous Fungi Isolated from Amazonian Biodiversity.
    Pimentel PSS; de Oliveira JB; Astolfi-Filho S; Pereira N
    Appl Biochem Biotechnol; 2021 Dec; 193(12):3915-3935. PubMed ID: 34410613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass.
    Borin GP; Sanchez CC; de Souza AP; de Santana ES; de Souza AT; Paes Leme AF; Squina FM; Buckeridge M; Goldman GH; Oliveira JV
    PLoS One; 2015; 10(6):e0129275. PubMed ID: 26053961
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Scott CJR; McGregor NGS; Leadbeater DR; Oates NC; Hoßbach J; Abood A; Setchfield A; Dowle A; Overkleeft HS; Davies GJ; Bruce NC
    Microbiol Spectr; 2024 Jul; 12(7):e0394323. PubMed ID: 38757984
    [No Abstract]   [Full Text] [Related]  

  • 10. A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy
    Alam A; Zhang R; Liu P; Huang J; Wang Y; Hu Z; Madadi M; Sun D; Hu R; Ragauskas AJ; Tu Y; Peng L
    Biotechnol Biofuels; 2019; 12():99. PubMed ID: 31057665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An In-Depth Understanding of Biomass Recalcitrance Using Natural Poplar Variants as the Feedstock.
    Meng X; Pu Y; Yoo CG; Li M; Bali G; Park DY; Gjersing E; Davis MF; Muchero W; Tuskan GA; Tschaplinski TJ; Ragauskas AJ
    ChemSusChem; 2017 Jan; 10(1):139-150. PubMed ID: 27882723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw.
    Rosgaard L; Pedersen S; Meyer AS
    Appl Biochem Biotechnol; 2007 Dec; 143(3):284-96. PubMed ID: 18057455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment.
    Auxenfans T; Crônier D; Chabbert B; Paës G
    Biotechnol Biofuels; 2017; 10():36. PubMed ID: 28191037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose induced protein 1 (Cip1) from Trichoderma reesei enhances the enzymatic hydrolysis of pretreated lignocellulose.
    Jia H; Sun W; Li X; Zhao J
    Microb Cell Fact; 2021 Jul; 20(1):136. PubMed ID: 34281536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production using the whole solid-state fermentation medium of mixed filamentous fungi.
    Maehara L; Pereira SC; Silva AJ; Farinas CS
    Biotechnol Prog; 2018 May; 34(3):671-680. PubMed ID: 29388389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining analytical approaches for better lignocellulosic biomass degradation: a way of improving fungal enzymatic cocktails?
    Raulo R; Heuson E; Froidevaux R; Phalip V
    Biotechnol Lett; 2021 Dec; 43(12):2283-2298. PubMed ID: 34708264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recalcitrant carbohydrates after enzymatic hydrolysis of pretreated lignocellulosic biomass.
    Alcántara MÁ; Dobruchowska J; Azadi P; García BD; Molina-Heredia FP; Reyes-Sosa FM
    Biotechnol Biofuels; 2016; 9():207. PubMed ID: 27713766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei.
    Borin GP; Sanchez CC; de Santana ES; Zanini GK; Dos Santos RAC; de Oliveira Pontes A; de Souza AT; Dal'Mas RMMTS; Riaño-Pachón DM; Goldman GH; Oliveira JVC
    BMC Genomics; 2017 Jun; 18(1):501. PubMed ID: 28666414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal secretomes enhance sugar beet pulp hydrolysis.
    Kracher D; Oros D; Yao W; Preims M; Rezic I; Haltrich D; Rezic T; Ludwig R
    Biotechnol J; 2014 Apr; 9(4):483-92. PubMed ID: 24677771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.
    Florencio C; Cunha FM; Badino AC; Farinas CS; Ximenes E; Ladisch MR
    Enzyme Microb Technol; 2016 Aug; 90():53-60. PubMed ID: 27241292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.