These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30976376)

  • 1. Roughening of Copper (100) at Elevated CO Pressure: Cu Adatom and Cluster Formation Enable CO Dissociation.
    Roiaz M; Falivene L; Rameshan C; Cavallo L; Kozlov SM; Rupprechter G
    J Phys Chem C Nanomater Interfaces; 2019 Apr; 123(13):8112-8121. PubMed ID: 30976376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO Adsorption on Reconstructed Ir(100) Surfaces from UHV to mbar Pressure: A LEED, TPD, and PM-IRAS Study.
    Anic K; Bukhtiyarov AV; Li H; Rameshan C; Rupprechter G
    J Phys Chem C Nanomater Interfaces; 2016 May; 120(20):10838-10848. PubMed ID: 27257467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Spectroscopy on UHV-Grown and Technological Ni-ZrO
    Anic K; Wolfbeisser A; Li H; Rameshan C; Föttinger K; Bernardi J; Rupprechter G
    Top Catal; 2016; 59(17):1614-1627. PubMed ID: 28035177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between co-adsorbed CO and H on a Rh(100) single crystal surface.
    Jansen MM; Gracia J; Nieuwenhuys BE; Niemantsverdriet HJ
    Phys Chem Chem Phys; 2009 Nov; 11(43):10009-16. PubMed ID: 19865753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of Copper-Cobalt Surface Alloys in Equilibrium with Carbon Monoxide Gas.
    Eren B; Torres D; Karslıoğlu O; Liu Z; Wu CH; Stacchiola D; Bluhm H; Somorjai GA; Salmeron M
    J Am Chem Soc; 2018 May; 140(21):6575-6581. PubMed ID: 29738671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT and TPD study of the role of steps in the adsorption of CO on copper: Cu(4 1 0) versus Cu(1 0 0).
    Kokalj A; Makino T; Okada M
    J Phys Condens Matter; 2017 May; 29(19):194001. PubMed ID: 28291017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction pathways of 2-iodoacetic acid on Cu(100): coverage-dependent competition between C-I bond scission and COOH deprotonation and identification of surface intermediates.
    Lin YS; Lin JS; Liao YH; Yang CM; Kuo CW; Lin HP; Fan LJ; Yang YW; Lin JL
    Langmuir; 2010 Jun; 26(11):8218-25. PubMed ID: 20356026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The surface chemistry of dimethyl disulfide on copper.
    Furlong OJ; Miller BP; Li Z; Walker J; Burkholder L; Tysoe WT
    Langmuir; 2010 Nov; 26(21):16375-80. PubMed ID: 20617851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of CO Adsorbed to Clean and Partially Oxidized Cu(211) and Cu(111).
    Zhang D; Virchenko V; Jansen C; Bakker JM; Meyer J; Kleyn AW; Groot IMN; Berg OT; Juurlink LBF
    J Phys Chem C Nanomater Interfaces; 2023 Dec; 127(50):24158-24167. PubMed ID: 38148851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal-Organic Chains.
    Feng M; Petek H; Shi Y; Sun H; Zhao J; Calaza F; Sterrer M; Freund HJ
    ACS Nano; 2015 Dec; 9(12):12124-36. PubMed ID: 26548479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing adsorption sites for CO on ceria.
    Mudiyanselage K; Kim HY; Senanayake SD; Baber AE; Liu P; Stacchiola D
    Phys Chem Chem Phys; 2013 Oct; 15(38):15856-62. PubMed ID: 23942870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ IR spectroscopic studies of Ni surface segregation induced by CO adsorption on Cu-Ni/SiO2 bimetallic catalysts.
    Yao Y; Goodman DW
    Phys Chem Chem Phys; 2014 Feb; 16(8):3823-9. PubMed ID: 24435048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of step-site and zinc in surface chemistry of formic acid on clean and Zn-modified Cu(111) and Cu(997) surfaces studied by HR-XPS, TPD, and IRAS.
    Shiozawa Y; Koitaya T; Mukai K; Yoshimoto S; Yoshinobu J
    J Chem Phys; 2020 Jan; 152(4):044703. PubMed ID: 32007070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface chemistry of CN bond formation from carbon and nitrogen atoms on Pt(111).
    Herceg E; Trenary M
    J Phys Chem B; 2005 Sep; 109(37):17560-6. PubMed ID: 16853246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of an Ultrathin Zirconia Film on Pt
    Li H; Choi JI; Mayr-Schmölzer W; Weilach C; Rameshan C; Mittendorfer F; Redinger J; Schmid M; Rupprechter G
    J Phys Chem C Nanomater Interfaces; 2015 Feb; 119(5):2462-2470. PubMed ID: 25688293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethylene decomposition at undercoordinated sites on Cu(410).
    Kravchuk T; Vattuone L; Burkholder L; Tysoe WT; Rocca M
    J Am Chem Soc; 2008 Sep; 130(38):12552-3. PubMed ID: 18729365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of Gallium with a Copper Surface: Surface Alloying and Formation of Ordered Structures.
    Lee SW; Subramanian A; Zamudio FB; Zhong JQ; Kozlov SM; Shaikhutdinov S; Roldan Cuenya B
    J Phys Chem C Nanomater Interfaces; 2023 Oct; 127(42):20700-20709. PubMed ID: 37908742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of carbon on the adsorption of CO on a Rh(100) single crystal.
    Nieskens DL; Jansen MM; van Bavel AP; Curulla-Ferré D; Niemantsverdriet JW
    Phys Chem Chem Phys; 2006 Feb; 8(5):624-32. PubMed ID: 16482304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isocyanate formation in the catalytic reaction of CO + NO on Pd(111): an in situ infrared spectroscopic study at elevated pressures.
    Ozensoy E; Hess C; Goodman DW
    J Am Chem Soc; 2002 Jul; 124(29):8524-5. PubMed ID: 12121082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.