BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 30976382)

  • 21. In vitro evidence for the role of OATP and OCT uptake transporters in drug-drug interactions.
    Kindla J; Fromm MF; König J
    Expert Opin Drug Metab Toxicol; 2009 May; 5(5):489-500. PubMed ID: 19416085
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Species differences in drug transporters and implications for translating preclinical findings to humans.
    Chu X; Bleasby K; Evers R
    Expert Opin Drug Metab Toxicol; 2013 Mar; 9(3):237-52. PubMed ID: 23256482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular Properties of Drugs Interacting with SLC22 Transporters OAT1, OAT3, OCT1, and OCT2: A Machine-Learning Approach.
    Liu HC; Goldenberg A; Chen Y; Lun C; Wu W; Bush KT; Balac N; Rodriguez P; Abagyan R; Nigam SK
    J Pharmacol Exp Ther; 2016 Oct; 359(1):215-29. PubMed ID: 27488918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stereoselectivity of chiral drug transport: a focus on enantiomer-transporter interaction.
    Zhou Q; Yu LS; Zeng S
    Drug Metab Rev; 2014 Aug; 46(3):283-90. PubMed ID: 24796860
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy.
    Nies AT; Koepsell H; Damme K; Schwab M
    Handb Exp Pharmacol; 2011; (201):105-67. PubMed ID: 21103969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of oral antidiabetic drugs with hepatic uptake transporters: focus on organic anion transporting polypeptides and organic cation transporter 1.
    Bachmakov I; Glaeser H; Fromm MF; König J
    Diabetes; 2008 Jun; 57(6):1463-9. PubMed ID: 18314419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of the bioactive flavonol, icariin, with the essential human solute carrier transporters.
    Li Z; Cheung FS; Zheng J; Chan T; Zhu L; Zhou F
    J Biochem Mol Toxicol; 2014 Feb; 28(2):91-7. PubMed ID: 24265111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solute carrier transporters: potential targets for digestive system neoplasms.
    Xie J; Zhu XY; Liu LM; Meng ZQ
    Cancer Manag Res; 2018; 10():153-166. PubMed ID: 29416375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation and Quantitative Prediction of Renal Transporter-Mediated Drug-Drug Interactions.
    Feng B; Varma MV
    J Clin Pharmacol; 2016 Jul; 56 Suppl 7():S110-21. PubMed ID: 27385169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ligand- and Structure-based Approaches for Transmembrane Transporter Modeling.
    Grandits M; Ecker GF
    Curr Drug Res Rev; 2023 May; ():. PubMed ID: 37157206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions with selected drug renal transporters and transporter-mediated cytotoxicity in antiviral agents from the group of acyclic nucleoside phosphonates.
    Mandíková J; Volková M; Pávek P; Česnek M; Janeba Z; Kubíček V; Trejtnar F
    Toxicology; 2013 Sep; 311(3):135-46. PubMed ID: 23856525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational models for predicting interactions with membrane transporters.
    Xu Y; Shen Q; Liu X; Lu J; Li S; Luo C; Gong L; Luo X; Zheng M; Jiang H
    Curr Med Chem; 2013; 20(16):2118-36. PubMed ID: 23409721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeting SLC transporters: small molecules as modulators and therapeutic opportunities.
    Schlessinger A; Zatorski N; Hutchinson K; Colas C
    Trends Biochem Sci; 2023 Sep; 48(9):801-814. PubMed ID: 37355450
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of Transporters in Central Nervous System Drug Delivery and Blood-Brain Barrier Protection: Relevance to Treatment of Stroke.
    Brzica H; Abdullahi W; Ibbotson K; Ronaldson PT
    J Cent Nerv Syst Dis; 2017; 9():1179573517693802. PubMed ID: 28469523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The inhibitory effects of eighteen front-line antibiotics on the substrate uptake mediated by human Organic anion/cation transporters, Organic anion transporting polypeptides and Oligopeptide transporters in in vitro models.
    Lu X; Chan T; Zhu L; Bao X; Velkov T; Zhou QT; Li J; Chan HK; Zhou F
    Eur J Pharm Sci; 2018 Mar; 115():132-143. PubMed ID: 29307856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drug Transport by the Blood-Aqueous Humor Barrier of the Eye.
    Lee J; Pelis RM
    Drug Metab Dispos; 2016 Oct; 44(10):1675-81. PubMed ID: 26895982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression and function of organic cation and anion transporters (SLC22 family) in the CNS.
    Farthing CA; Sweet DH
    Curr Pharm Des; 2014; 20(10):1472-86. PubMed ID: 23789957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transporters and drug-drug interactions: important determinants of drug disposition and effects.
    König J; Müller F; Fromm MF
    Pharmacol Rev; 2013 Jul; 65(3):944-66. PubMed ID: 23686349
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Role of Solute Carrier Transporters in Efficient Anticancer Drug Delivery and Therapy.
    Puris E; Fricker G; Gynther M
    Pharmaceutics; 2023 Jan; 15(2):. PubMed ID: 36839686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption.
    Shitara Y; Maeda K; Ikejiri K; Yoshida K; Horie T; Sugiyama Y
    Biopharm Drug Dispos; 2013 Jan; 34(1):45-78. PubMed ID: 23115084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.