These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 30976677)
21. Verification of temperature, wind and precipitation fields for the high-resolution WRF NMM model over the complex terrain of Montenegro. Zečević A; Filipović L; Marčev A Technol Health Care; 2023; 31(4):1525-1539. PubMed ID: 36641700 [TBL] [Abstract][Full Text] [Related]
22. Impact of parameterization of physical processes on simulation of track and intensity of tropical cyclone Nargis (2008) with WRF-NMM model. Pattanayak S; Mohanty UC; Osuri KK ScientificWorldJournal; 2012; 2012():671437. PubMed ID: 22701366 [TBL] [Abstract][Full Text] [Related]
23. Establishing the Suitability of the Model for Prediction Across Scales for Global Retrospective Air Quality Modeling. Gilliam RC; Herwehe JA; Bullock OR; Pleim JE; Ran L; Campbell PC; Foroutan H J Geophys Res Atmos; 2021 May; 126(10):. PubMed ID: 34123691 [TBL] [Abstract][Full Text] [Related]
24. Study of the Vertical Structure of the Coastal Boundary Layer Integrating Surface Measurements and Ground-Based Remote Sensing. Lo Feudo T; Calidonna CR; Avolio E; Sempreviva AM Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33202664 [TBL] [Abstract][Full Text] [Related]
25. One-way coupling of WRF with a Gaussian dispersion model: a focused fine-scale air pollution assessment on southern Mediterranean. Snoun H; Bellakhal G; Kanfoudi H; Zhang X; Chahed J Environ Sci Pollut Res Int; 2019 Aug; 26(22):22892-22906. PubMed ID: 31177418 [TBL] [Abstract][Full Text] [Related]
26. Impacts of offshore wind farms on the atmospheric environment over Taiwan Strait during an extreme weather typhoon event. Lee TY; Wu YT; Kueh MT; Lin CY; Lin YY; Sheng YF Sci Rep; 2022 Jan; 12(1):823. PubMed ID: 35039590 [TBL] [Abstract][Full Text] [Related]
27. Numerical study of the effects of Planetary Boundary Layer structure on the pollutant dispersion within built-up areas. Miao Y; Liu S; Zheng Y; Wang S; Liu Z; Zhang B J Environ Sci (China); 2015 Jun; 32():168-79. PubMed ID: 26040743 [TBL] [Abstract][Full Text] [Related]
28. High-resolution wind speed forecast system coupling numerical weather prediction and machine learning for agricultural studies - a case study from South Korea. Shin JY; Min B; Kim KR Int J Biometeorol; 2022 Jul; 66(7):1429-1443. PubMed ID: 35449427 [TBL] [Abstract][Full Text] [Related]
29. Unveiling tropospheric ozone by the traditional atmospheric model and machine learning, and their comparison:A case study in hangzhou, China. Feng R; Zheng HJ; Zhang AR; Huang C; Gao H; Ma YC Environ Pollut; 2019 Sep; 252(Pt A):366-378. PubMed ID: 31158665 [TBL] [Abstract][Full Text] [Related]
30. Exploring atmospheric stagnation during a severe particulate matter air pollution episode over complex terrain in Santiago, Chile. Toro A R; Kvakić M; Klaić ZB; Koračin D; Morales S RGE; Leiva G MA Environ Pollut; 2019 Jan; 244():705-714. PubMed ID: 30384076 [TBL] [Abstract][Full Text] [Related]
31. The sensitivity of WRF daily summertime simulations over West Africa to alternative parameterizations. Part 2: Precipitation. Noble E; Druyan LM; Fulakeza M Mon Weather Rev; 2016 Jan; 145(No 1):215-233. PubMed ID: 29563651 [TBL] [Abstract][Full Text] [Related]
32. Lidar algorithms and technique in 3D scanning for planetary boundary layer height and single-beam-single-pointing wind speed retrieval. Pantazis A; Papayannis A Appl Opt; 2019 Mar; 58(9):2284-2293. PubMed ID: 31044923 [TBL] [Abstract][Full Text] [Related]
33. WRF-SMOKE-CMAQ modeling system for air quality evaluation in São Paulo megacity with a 2008 experimental campaign data. de Almeida Albuquerque TT; de Fátima Andrade M; Ynoue RY; Moreira DM; Andreão WL; Dos Santos FS; Nascimento EGS Environ Sci Pollut Res Int; 2018 Dec; 25(36):36555-36569. PubMed ID: 30374719 [TBL] [Abstract][Full Text] [Related]
34. Modeling PM Wang P; Qiao X; Zhang H Chemosphere; 2020 Sep; 254():126735. PubMed ID: 32325353 [TBL] [Abstract][Full Text] [Related]
36. Implementation and evaluation of WRF simulation over a city with complex terrain using Alos-Palsar 0.4 s topography. Guevara Luna MA; Casallas A; Belalcázar Cerón LC; Clappier A Environ Sci Pollut Res Int; 2020 Oct; 27(30):37818-37838. PubMed ID: 32613506 [TBL] [Abstract][Full Text] [Related]
37. Quantifying the effects of LUCCs on local temperatures, precipitation, and wind using the WRF model. Lian L; Li B; Chen Y; Chu C; Qin Y Environ Monit Assess; 2017 Sep; 189(10):501. PubMed ID: 28894965 [TBL] [Abstract][Full Text] [Related]
38. Optimization of physical schemes in WRF model on cyclone simulations over Bay of Bengal using one-way ANOVA and Tukey's test. Shenoy M; Raju PVS; Prasad J Sci Rep; 2021 Dec; 11(1):24412. PubMed ID: 34952900 [TBL] [Abstract][Full Text] [Related]
39. Impacts of meteorological conditions on wintertime PM Miao Y; Liu S; Guo J; Yan Y; Huang S; Zhang G; Zhang Y; Lou M Environ Sci Pollut Res Int; 2018 Aug; 25(22):21855-21866. PubMed ID: 29796888 [TBL] [Abstract][Full Text] [Related]
40. Weather forecasting based on data-driven and physics-informed reservoir computing models. Mammedov YD; Olugu EU; Farah GA Environ Sci Pollut Res Int; 2022 Apr; 29(16):24131-24144. PubMed ID: 34825327 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]