These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 30976761)
1. MnO@graphene nanopeapods derived via a one-pot hydrothermal process for a high performance anode in Li-ion batteries. Xiao Z; Ning G; Yu Z; Qi C; Zhao L; Li Y; Ma X; Li Y Nanoscale; 2019 Apr; 11(17):8270-8280. PubMed ID: 30976761 [TBL] [Abstract][Full Text] [Related]
2. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life li-ion batteries. Jiang H; Hu Y; Guo S; Yan C; Lee PS; Li C ACS Nano; 2014 Jun; 8(6):6038-46. PubMed ID: 24842575 [TBL] [Abstract][Full Text] [Related]
3. Rational Design of Graphene-Reinforced MnO Nanowires with Enhanced Electrochemical Performance for Li-Ion Batteries. Sun Q; Wang Z; Zhang Z; Yu Q; Qu Y; Zhang J; Yu Y; Xiang B ACS Appl Mater Interfaces; 2016 Mar; 8(10):6303-8. PubMed ID: 26894410 [TBL] [Abstract][Full Text] [Related]
4. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes. Fang W; Zhao H; Xie Y; Fang J; Xu J; Chen Z ACS Appl Mater Interfaces; 2015 Jun; 7(23):13044-52. PubMed ID: 26016687 [TBL] [Abstract][Full Text] [Related]
5. Free-standing reduced graphene oxide/MnO Li Y; Ye D; Shi B; Liu W; Guo R; Pei H; Xie J Phys Chem Chem Phys; 2017 Mar; 19(11):7498-7505. PubMed ID: 28067361 [TBL] [Abstract][Full Text] [Related]
6. High-capacity and long-life lithium storage boosted by pseudocapacitance in three-dimensional MnO-Cu-CNT/graphene anodes. Wang J; Deng Q; Li M; Jiang K; Hu Z; Chu J Nanoscale; 2018 Feb; 10(6):2944-2954. PubMed ID: 29372202 [TBL] [Abstract][Full Text] [Related]
7. Formation of porous nitrogen-doped carbon-coating MnO nanospheres for advanced reversible lithium storage. Zhang L; Ge D; Qu G; Zheng J; Cao X; Gu H Nanoscale; 2017 May; 9(17):5451-5457. PubMed ID: 28401232 [TBL] [Abstract][Full Text] [Related]
8. Polymerization inspired synthesis of MnO@carbon nanowires with long cycling stability for lithium ion battery anodes: growth mechanism and electrochemical performance. Zhou F; Li S; Han K; Li Y; Liu YN Dalton Trans; 2021 Jan; 50(2):535-545. PubMed ID: 33337455 [TBL] [Abstract][Full Text] [Related]
9. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Zheng F; Xia G; Yang Y; Chen Q Nanoscale; 2015 Jun; 7(21):9637-45. PubMed ID: 25955439 [TBL] [Abstract][Full Text] [Related]
10. Facile synthesis of one-dimensional Mn₃O₄/Zn₂SnO₄ hybrid composites and their high performance as anodes for LIBs. Zhang R; He Y; Li A; Xu L Nanoscale; 2014 Nov; 6(23):14221-6. PubMed ID: 25195654 [TBL] [Abstract][Full Text] [Related]
11. Hierarchical Mn Tang C; Xiong F; Yao X; Tan S; Lan B; An Q; Luo P; Mai L ACS Appl Mater Interfaces; 2019 Apr; 11(15):14120-14125. PubMed ID: 30908002 [TBL] [Abstract][Full Text] [Related]
12. One-Pot Decoration of Graphene with SnO₂ Nanocrystals by an Elevated Hydrothermal Process and Their Application as Anode Materials for Lithium Ion Batteries. Kong Z; Liu D; Liu X; Fu A; Wang Y; Guo P; Li H J Nanosci Nanotechnol; 2019 Feb; 19(2):850-858. PubMed ID: 30360162 [TBL] [Abstract][Full Text] [Related]
13. An FeP@C nanoarray vertically grown on graphene nanosheets: an ultrastable Li-ion battery anode with pseudocapacitance-boosted electrochemical kinetics. Hou BH; Wang YY; Ning QL; Fan CY; Xi XT; Yang X; Wang J; Zhang JP; Wang X; Wu XL Nanoscale; 2019 Jan; 11(3):1304-1312. PubMed ID: 30603754 [TBL] [Abstract][Full Text] [Related]
15. Facile synthesis of hierarchical micro/nanostructured MnO material and its excellent lithium storage property and high performance as anode in a MnO/LiNi0.5Mn1.5O(4-δ) lithium ion battery. Xu GL; Xu YF; Fang JC; Fu F; Sun H; Huang L; Yang S; Sun SG ACS Appl Mater Interfaces; 2013 Jul; 5(13):6316-23. PubMed ID: 23758592 [TBL] [Abstract][Full Text] [Related]
16. In situ hydrothermal synthesis of double-carbon enhanced novel cobalt germanium hydroxide composites as promising anode material for sodium ion batteries. Wen N; Chen S; Feng J; Zhang K; Zhou Z; Li X; Fan Q; Kuang Q; Dong Y; Zhao Y Dalton Trans; 2021 Mar; 50(12):4288-4299. PubMed ID: 33688893 [TBL] [Abstract][Full Text] [Related]
17. Freestanding, Hierarchical, and Porous Bilayered Na Xu G; Liu X; Huang S; Li L; Wei X; Cao J; Yang L; Chu PK ACS Appl Mater Interfaces; 2020 Jan; 12(1):706-716. PubMed ID: 31799821 [TBL] [Abstract][Full Text] [Related]
18. Layered g-C Wang S; Shi Y; Fan C; Liu J; Li Y; Wu XL; Xie H; Zhang J; Sun H ACS Appl Mater Interfaces; 2018 Sep; 10(36):30330-30336. PubMed ID: 30117734 [TBL] [Abstract][Full Text] [Related]
19. A three-dimensional core-shell nanostructured composite of polypyrrole wrapped MnO(2)/reduced graphene oxide/carbon nanotube for high performance lithium ion batteries. Li Y; Ye D; Liu W; Shi B; Guo R; Pei H; Xie J J Colloid Interface Sci; 2017 May; 493():241-248. PubMed ID: 28107728 [TBL] [Abstract][Full Text] [Related]
20. In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries. Xu X; Ji S; Gu M; Liu J ACS Appl Mater Interfaces; 2015 Sep; 7(37):20957-64. PubMed ID: 26336101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]