These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 30976810)
1. Bacterial Ligase D preternary-precatalytic complex performs efficient abasic sites processing at double strand breaks during nonhomologous end joining. de Ory A; Carabaña C; de Vega M Nucleic Acids Res; 2019 Jun; 47(10):5276-5292. PubMed ID: 30976810 [TBL] [Abstract][Full Text] [Related]
2. Efficient processing of abasic sites by bacterial nonhomologous end-joining Ku proteins. de Ory A; Zafra O; de Vega M Nucleic Acids Res; 2014 Dec; 42(21):13082-95. PubMed ID: 25355514 [TBL] [Abstract][Full Text] [Related]
3. An Intrinsically Disordered APLF Links Ku, DNA-PKcs, and XRCC4-DNA Ligase IV in an Extended Flexible Non-homologous End Joining Complex. Hammel M; Yu Y; Radhakrishnan SK; Chokshi C; Tsai MS; Matsumoto Y; Kuzdovich M; Remesh SG; Fang S; Tomkinson AE; Lees-Miller SP; Tainer JA J Biol Chem; 2016 Dec; 291(53):26987-27006. PubMed ID: 27875301 [TBL] [Abstract][Full Text] [Related]
4. Specificity of the dRP/AP lyase of Ku promotes nonhomologous end joining (NHEJ) fidelity at damaged ends. Strande N; Roberts SA; Oh S; Hendrickson EA; Ramsden DA J Biol Chem; 2012 Apr; 287(17):13686-93. PubMed ID: 22362780 [TBL] [Abstract][Full Text] [Related]
5. Ku is a 5'-dRP/AP lyase that excises nucleotide damage near broken ends. Roberts SA; Strande N; Burkhalter MD; Strom C; Havener JM; Hasty P; Ramsden DA Nature; 2010 Apr; 464(7292):1214-7. PubMed ID: 20383123 [TBL] [Abstract][Full Text] [Related]
6. Identification of a conserved 5'-dRP lyase activity in bacterial DNA repair ligase D and its potential role in base excision repair. de Ory A; Nagler K; Carrasco B; Raguse M; Zafra O; Moeller R; de Vega M Nucleic Acids Res; 2016 Feb; 44(4):1833-44. PubMed ID: 26826709 [TBL] [Abstract][Full Text] [Related]
7. The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends. Aniukwu J; Glickman MS; Shuman S Genes Dev; 2008 Feb; 22(4):512-27. PubMed ID: 18281464 [TBL] [Abstract][Full Text] [Related]
8. Gap filling activities of Pseudomonas DNA ligase D (LigD) polymerase and functional interactions of LigD with the DNA end-binding Ku protein. Zhu H; Shuman S J Biol Chem; 2010 Feb; 285(7):4815-25. PubMed ID: 20018881 [TBL] [Abstract][Full Text] [Related]
9. The minimal Bacillus subtilis nonhomologous end joining repair machinery. de Vega M PLoS One; 2013; 8(5):e64232. PubMed ID: 23691176 [TBL] [Abstract][Full Text] [Related]
10. Identification of a DNA nonhomologous end-joining complex in bacteria. Weller GR; Kysela B; Roy R; Tonkin LM; Scanlan E; Della M; Devine SK; Day JP; Wilkinson A; d'Adda di Fagagna F; Devine KM; Bowater RP; Jeggo PA; Jackson SP; Doherty AJ Science; 2002 Sep; 297(5587):1686-9. PubMed ID: 12215643 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C. Gong C; Bongiorno P; Martins A; Stephanou NC; Zhu H; Shuman S; Glickman MS Nat Struct Mol Biol; 2005 Apr; 12(4):304-12. PubMed ID: 15778718 [TBL] [Abstract][Full Text] [Related]
12. DNA ligase C1 mediates the LigD-independent nonhomologous end-joining pathway of Mycobacterium smegmatis. Bhattarai H; Gupta R; Glickman MS J Bacteriol; 2014 Oct; 196(19):3366-76. PubMed ID: 24957619 [TBL] [Abstract][Full Text] [Related]
13. Characterization of Mycobacterium smegmatis PolD2 and PolD1 as RNA/DNA polymerases homologous to the POL domain of bacterial DNA ligase D. Zhu H; Bhattarai H; Yan HG; Shuman S; Glickman MS Biochemistry; 2012 Dec; 51(51):10147-58. PubMed ID: 23198659 [TBL] [Abstract][Full Text] [Related]
14. Ku antigen displays the AP lyase activity on a certain type of duplex DNA. Kosova AA; Khodyreva SN; Lavrik OI Biochim Biophys Acta; 2016 Sep; 1864(9):1244-1252. PubMed ID: 27129632 [TBL] [Abstract][Full Text] [Related]
15. Different DNA End Configurations Dictate Which NHEJ Components Are Most Important for Joining Efficiency. Chang HHY; Watanabe G; Gerodimos CA; Ochi T; Blundell TL; Jackson SP; Lieber MR J Biol Chem; 2016 Nov; 291(47):24377-24389. PubMed ID: 27703001 [TBL] [Abstract][Full Text] [Related]
16. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. Pannunzio NR; Watanabe G; Lieber MR J Biol Chem; 2018 Jul; 293(27):10512-10523. PubMed ID: 29247009 [TBL] [Abstract][Full Text] [Related]
17. APLF (C2orf13) facilitates nonhomologous end-joining and undergoes ATM-dependent hyperphosphorylation following ionizing radiation. Macrae CJ; McCulloch RD; Ylanko J; Durocher D; Koch CA DNA Repair (Amst); 2008 Feb; 7(2):292-302. PubMed ID: 18077224 [TBL] [Abstract][Full Text] [Related]
18. Nucleotide misincorporation, 3'-mismatch extension, and responses to abasic sites and DNA adducts by the polymerase component of bacterial DNA ligase D. Yakovleva L; Shuman S J Biol Chem; 2006 Sep; 281(35):25026-40. PubMed ID: 16816388 [TBL] [Abstract][Full Text] [Related]
19. Polymerase μ in non-homologous DNA end joining: importance of the order of arrival at a double-strand break in a purified system. Zhao B; Watanabe G; Lieber MR Nucleic Acids Res; 2020 Apr; 48(7):3605-3618. PubMed ID: 32052035 [TBL] [Abstract][Full Text] [Related]
20. Mycobacterium tuberculosis and Mycobacterium marinum non-homologous end-joining proteins can function together to join DNA ends in Escherichia coli. Wright DG; Castore R; Shi R; Mallick A; Ennis DG; Harrison L Mutagenesis; 2017 Mar; 32(2):245-256. PubMed ID: 27613236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]