These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 30977148)
1. Anthocyanin composition of grapes from three different soil types in cv. Tempranillo A.O.C. Rioja vineyards. Pérez-Álvarez EP; Martínez-Vidaurre JM; Garde-Cerdán T J Sci Food Agric; 2019 Aug; 99(10):4833-4841. PubMed ID: 30977148 [TBL] [Abstract][Full Text] [Related]
2. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles. Cheng G; He YN; Yue TX; Wang J; Zhang ZW Molecules; 2014 Sep; 19(9):13683-703. PubMed ID: 25185071 [TBL] [Abstract][Full Text] [Related]
3. Variability of Tempranillo grape composition in the Rioja DOCa (Spain) related to soil and climatic characteristics. Ramos MC; Martínez de Toda F J Sci Food Agric; 2019 Feb; 99(3):1153-1165. PubMed ID: 30054923 [TBL] [Abstract][Full Text] [Related]
4. Chemical characteristics of grapes cv. Syrah (Vitis vinifera L.) grown in the tropical semiarid region of Brazil (Pernambuco state): influence of rootstock and harvest season. de Oliveira JB; Egipto R; Laureano O; de Castro R; Pereira GE; Ricardo-da-Silva JM J Sci Food Agric; 2019 Aug; 99(11):5050-5063. PubMed ID: 30980407 [TBL] [Abstract][Full Text] [Related]
5. Effect of Three Training Systems on Grapes in a Wet Region of China: Yield, Incidence of Disease and Anthocyanin Compositions of Vitis vinifera cv. Cabernet Sauvignon. Liu MY; Chi M; Tang YH; Song CZ; Xi ZM; Zhang ZW Molecules; 2015 Oct; 20(10):18967-87. PubMed ID: 26492226 [TBL] [Abstract][Full Text] [Related]
6. Influence of vineyard location and vine water status on fruit maturation of nonirrigated cv. Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic and aroma components. Koundouras S; Marinos V; Gkoulioti A; Kotseridis Y; van Leeuwen C J Agric Food Chem; 2006 Jul; 54(14):5077-86. PubMed ID: 16819919 [TBL] [Abstract][Full Text] [Related]
7. Effects of leaf removal on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in Cabernet Sauvignon (Vitis vinifera L.) grapes. Yue X; Zhao Y; Ma X; Jiao X; Fang Y; Zhang Z; Ju Y J Sci Food Agric; 2021 Jun; 101(8):3214-3224. PubMed ID: 33211320 [TBL] [Abstract][Full Text] [Related]
8. Anthocyanin composition of Cabernet Sauvignon and Tempranillo grapes at different stages of ripening. Ryan JM; Revilla E J Agric Food Chem; 2003 May; 51(11):3372-8. PubMed ID: 12744669 [TBL] [Abstract][Full Text] [Related]
9. Characterization of phenolic composition in Carignan noir grapes (Vitis vinifera L.) from six wine-growing sites in Maule Valley, Chile. Martínez-Gil AM; Gutiérrez-Gamboa G; Garde-Cerdán T; Pérez-Álvarez EP; Moreno-Simunovic Y J Sci Food Agric; 2018 Jan; 98(1):274-282. PubMed ID: 28585244 [TBL] [Abstract][Full Text] [Related]
10. Relationship between the elemental composition of grapeyards and bioactive compounds in the Cabernet Sauvignon grapes Vitis vinífera harvested in Mexico. Acuña-Avila PE; Vásquez-Murrieta MS; Franco Hernández MO; López-Cortéz MDS Food Chem; 2016 Jul; 203():79-85. PubMed ID: 26948592 [TBL] [Abstract][Full Text] [Related]
12. Grape yield and quality responses to simulated year 2100 expected climatic conditions under different soil textures. Leibar U; Pascual I; Morales F; Aizpurua A; Unamunzaga O J Sci Food Agric; 2017 Jun; 97(8):2633-2640. PubMed ID: 27748529 [TBL] [Abstract][Full Text] [Related]
13. Relationship between skin cell wall composition and anthocyanin extractability of Vitis vinifera L. cv. Tempranillo at different grape ripeness degree. Hernández-Hierro JM; Quijada-Morín N; Martínez-Lapuente L; Guadalupe Z; Ayestarán B; Rivas-Gonzalo JC; Escribano-Bailón MT Food Chem; 2014 Mar; 146():41-7. PubMed ID: 24176311 [TBL] [Abstract][Full Text] [Related]
14. Vitis vinifera Turkish grape cultivar Karaerik. Part I: anthocyanin composition, and identification of a newly found anthocyanin Hermosín-Gutiérrez I; Gómez-Alonso S; Pérez-Navarro J; Kurt A; Colak N; Akpınar E; Hayirlioglu-Ayaz S; Ayaz FA J Sci Food Agric; 2020 Feb; 100(3):1301-1310. PubMed ID: 31743440 [TBL] [Abstract][Full Text] [Related]
15. Influence of Berry Heterogeneity on Phenolics and Antioxidant Activity of Grapes and Wines: A Primary Study of the New Winegrape Cultivar Meili (Vitis vinifera L.). Liu X; Li J; Tian Y; Liao M; Zhang Z PLoS One; 2016; 11(3):e0151276. PubMed ID: 26974974 [TBL] [Abstract][Full Text] [Related]
16. The impact of grapevine red blotch disease on Vitis vinifera L. Chardonnay grape and wine composition and sensory attributes over three seasons. Cauduro Girardello R; Rich V; Smith RJ; Brenneman C; Heymann H; Oberholster A J Sci Food Agric; 2020 Mar; 100(4):1436-1447. PubMed ID: 31742703 [TBL] [Abstract][Full Text] [Related]
17. Foliar applications of iron promote flavonoids accumulation in grape berry of Vitis vinifera cv. Merlot grown in the iron deficiency soil. Shi P; Song C; Chen H; Duan B; Zhang Z; Meng J Food Chem; 2018 Jul; 253():164-170. PubMed ID: 29502817 [TBL] [Abstract][Full Text] [Related]
18. Double maturation raisonnée: the impact of on-vine berry dehydration on the berry and wine composition of Merlot (Vitis vinifera L.). Rusjan D; Mikulic-Petkovsek M J Sci Food Agric; 2017 Nov; 97(14):4835-4846. PubMed ID: 28382623 [TBL] [Abstract][Full Text] [Related]
19. Influence of different withering conditions on phenolic composition of Avanà, Chatus and Nebbiolo grapes for the production of 'Reinforced' wines. Torchio F; Urcan DE; Lin L; Gerbi V; Giacosa S; Río Segade S; Pop N; Lambri M; Rolle L Food Chem; 2016 Mar; 194():247-56. PubMed ID: 26471551 [TBL] [Abstract][Full Text] [Related]
20. Anthocyanin composition and extractability in berry skin and wine of Vitis vinifera L. cv. Aglianico. Manfra M; De Nisco M; Bolognese A; Nuzzo V; Sofo A; Scopa A; Santi L; Tenore GC; Novellino E J Sci Food Agric; 2011 Dec; 91(15):2749-55. PubMed ID: 21800322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]