These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 3097731)

  • 1. Potentiation of disruptive effects of dextromethorphan by naloxone on fixed-interval performance in rats.
    Taşkin T
    Psychopharmacology (Berl); 1986; 90(3):408-11. PubMed ID: 3097731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of morphine, naloxone, d,l-cyclazocine, and d-amphetamine on behaviour controlled by a schedule of interresponse time reinforcement.
    Adam-Carrière D; Merali Z; Stretch R
    Can J Physiol Pharmacol; 1978 Oct; 56(5):707-20. PubMed ID: 709412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of clonidine and naloxone on schedule-controlled behavior in opioid-naive mice.
    Katz JL
    Psychopharmacology (Berl); 1989; 98(4):445-7. PubMed ID: 2505283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ethylketazocine and morphine alone and in combination with naloxone on schedule-controlled behavior in pigeons.
    Katz JL
    Psychopharmacology (Berl); 1987; 92(4):508-12. PubMed ID: 2888154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Naloxone potentiates the disruptive effects of mescaline on operant responding in the rat.
    Commissaris RL; Moore KE; Rech RH
    Pharmacol Biochem Behav; 1980 Oct; 13(4):601-3. PubMed ID: 7433492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of naloxone with morphine, amphetamine and phencyclidine on fixed interval responding for intracranial self-stimulation in rats.
    Schaefer GJ; Michael RP
    Psychopharmacology (Berl); 1990; 102(2):263-8. PubMed ID: 2274609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of acute morphine pretreatment on the rate-decreasing and antagonist activity of naloxone.
    Young AM
    Psychopharmacology (Berl); 1986; 88(2):201-8. PubMed ID: 3081932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of phencyclidine, haloperidol, and naloxone on fixed-interval performance in rats.
    Wagner GC; Masters DB; Tomie A
    Psychopharmacology (Berl); 1984; 84(1):32-8. PubMed ID: 6436887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the effects of anileridine, alphaprodine and fentanyl on schedule-controlled responding by pigeons.
    Leander JD
    J Pharmacol Exp Ther; 1978 Sep; 206(3):624-35. PubMed ID: 581295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meperidine effects on schedule-controlled responding.
    Leander JD; McMillan DE
    J Pharmacol Exp Ther; 1977 May; 201(2):434-43. PubMed ID: 859106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditioning processes contribute to severity of naloxone-precipitated withdrawal from acute opioid dependence.
    Schulteis G; Morse AC; Liu J
    Psychopharmacology (Berl); 2004 Oct; 175(4):463-72. PubMed ID: 15083263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the effects of opioid agonists and antagonists under a fixed-consecutive-number schedule in rats.
    Picker M; Heise JW; Dykstra LA
    Pharmacol Biochem Behav; 1987 May; 27(1):73-80. PubMed ID: 3615550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of morphine and two enzyme resistant enkephalins on schedule-controlled responding in the rat.
    Carney JM; Rosecrans JA
    Pharmacol Biochem Behav; 1978 Feb; 8(2):185-9. PubMed ID: 652827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Naloxone pretreatment blocks acute morphine-induced sensitization to naltrexone.
    White-Gbadebo D; Holtzman S
    Psychopharmacology (Berl); 1994 Mar; 114(2):225-8. PubMed ID: 7838911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dextromethorphan potentiates morphine antinociception at the spinal level in rats.
    Chow LH; Huang EY; Ho ST; Lee TY; Tao PL
    Can J Anaesth; 2004 Nov; 51(9):905-10. PubMed ID: 15525615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphine blocks and naloxone enhances suppression of operant behavior by low doses of 3-isobutyl-1-methylxanthine.
    Kleven MS; Sparber SB
    J Pharmacol Exp Ther; 1989 Jan; 248(1):273-7. PubMed ID: 2464058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphine potentiates dextromethorphan-induced vasodilation in rat superior mesenteric artery.
    Inan S; Tallarida RJ
    Eur J Pharmacol; 2004 Feb; 486(1):61-5. PubMed ID: 14751409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repeated experience with naloxone facilitates acute morphine withdrawal: potential role for conditioning processes in acute opioid dependence.
    Schulteis G; Morse AC; Liu J
    Pharmacol Biochem Behav; 2003 Dec; 76(3-4):493-503. PubMed ID: 14643849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of selected opioid agonists and antagonists on DMT- and LSD-25-induced disruption of food-rewarded bar pressing behavior in the rat.
    Ruffing DM; Domino EF
    Psychopharmacology (Berl); 1981; 75(3):226-30. PubMed ID: 6798611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug reinforcement studied by the use of place conditioning in rat.
    Mucha RF; van der Kooy D; O'Shaughnessy M; Bucenieks P
    Brain Res; 1982 Jul; 243(1):91-105. PubMed ID: 6288174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.