These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30977346)

  • 21. Using Alkylate Components for Classifying Gasoline in Fire Debris Samples.
    Peschier LJC; Grutters MMP; Hendrikse JN
    J Forensic Sci; 2018 Mar; 63(2):420-430. PubMed ID: 28556928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discrimination of Ignitable Liquid Residues in Burned Petroleum-Derived Substrates by Using HS-MS eNose and Chemometrics.
    Falatová B; Ferreiro-González M; P Calle JL; Álvarez JÁ; Palma M
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Study of pyrolysates of flue-cured tobacco leaves and stems].
    Yang W; Xie G; Wang B; Hou Y; Xu J; Yang Y; Yang Y; Wang Y
    Se Pu; 2006 Nov; 24(6):606-10. PubMed ID: 17288144
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of the tracheal contents using headspace gas chromatography-mass spectrometry to screen for accelerant use.
    Adachi N; Kinoshita H; Nishiguchi M; Takahashi M; Ouchi H; Minami T; Matsui K; Yamamura T; Motomura H; Ohtsu N; Yoshida S; Ameno K; Hishida S
    Soud Lek; 2009 Jan; 54(1):2-3. PubMed ID: 19402599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fire accelerant classification from GC-MS data of suspected arson cases using machine-learning models.
    Park C; Lee JB; Park W; Lee DK
    Forensic Sci Int; 2023 May; 346():111646. PubMed ID: 37001430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effects of microbial degradation effects based on generalized regression neural network on the detection of accelerants].
    Fang Q; Liu L
    Se Pu; 2019 Jun; 37(6):655-660. PubMed ID: 31152517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of a headspace solid-phase microextraction method for the analysis of ignitable liquids in fire debris.
    Fettig I; Krüger S; Deubel JH; Werrel M; Raspe T; Piechotta C
    J Forensic Sci; 2014 May; 59(3):743-9. PubMed ID: 24329005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study on the Minimum Fire-Extinguishing Concentration of Several Commonly Used Extinguishing Agents to Suppress Pyrolysis Gas of Red Pine Wood.
    Li H; Hao J; Du Z
    ACS Omega; 2023 Feb; 8(8):7757-7766. PubMed ID: 36873029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Fire Suppression Agents and Weathering in the Analysis of Fire Debris by HS-MS eNose.
    Falatová B; Ferreiro-González M; Martín-Alberca C; Kačíková D; Galla Š; Palma M; G Barroso C
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29899213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A solid-phase microextraction method for the detection of ignitable liquids in fire debris.
    Yoshida H; Kaneko T; Suzuki S
    J Forensic Sci; 2008 May; 53(3):668-76. PubMed ID: 18471212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical Simulation of Coupled Pyrolysis and Combustion Reactions with Directly Measured Fire Properties.
    Moinuddin K; Razzaque QS; Thomas A
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32932722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of pyrolysis behavior of carbofuran by pyrolysis-gas chromatography-mass spectrometry.
    Wang G; Hou Z; Sun Y; Zhang R; Xie K; Liu R
    J Hazard Mater; 2006 Feb; 129(1-3):22-30. PubMed ID: 16188381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of the type of accelerant, type of burned material, time of burning and availability of air on the possibility of detection of accelerants traces.
    Borusiewicz R; Zieba-Palus J; Zadora G
    Forensic Sci Int; 2006 Jul; 160(2-3):115-26. PubMed ID: 16260105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cryptic chemical identification as a crime intelligence aid.
    Sturaro A; Rella R; Parvoli G; Doretti L
    Sci Justice; 1999; 39(1):39-43. PubMed ID: 10750271
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon isotope analyses of n-alkanes released from rapid pyrolysis of oil asphaltenes in a closed system.
    Chen S; Jia W; Peng P
    Rapid Commun Mass Spectrom; 2016 Aug; 30(15):1779-86. PubMed ID: 27426454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Semiquantitative screening of trace combustion-derived volatile substances in the blood of fire victims using NeedlEx
    Suzuki Y; Ishizawa F; Honda K
    Forensic Sci Int; 2017 Sep; 278():228-239. PubMed ID: 28763683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of background interference on accelerant detection by canines.
    Kurz ME; Schultz S; Griffith J; Broadus K; Sparks J; Dabdoub G; Brock J
    J Forensic Sci; 1996 Sep; 41(5):868-73. PubMed ID: 8789850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison of the relative sensitivities of the adsorption wire and other methods for the detection of accelerant residues in fire debris.
    Twibell JD; Home JM; Smalldon KW
    J Forensic Sci Soc; 1982 Apr; 22(2):155-9. PubMed ID: 7097235
    [No Abstract]   [Full Text] [Related]  

  • 39. Analysis of household ignitable liquids and their post-combustion weathered residues using compound-specific gas chromatography-combustion-isotope ratio mass spectrometry.
    Schwartz Z; An Y; Konstantynova KI; Jackson GP
    Forensic Sci Int; 2013 Dec; 233(1-3):365-73. PubMed ID: 24314542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The use of vapour phase ultra-violet spectroscopy for the analysis of arson accelerants in fire scene debris.
    McCurdy RJ; Atwell T; Cole MD
    Forensic Sci Int; 2001 Dec; 123(2-3):191-201. PubMed ID: 11728747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.