BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30977366)

  • 1. How Size and Aggregation of Ice-Binding Proteins Control Their Ice Nucleation Efficiency.
    Qiu Y; Hudait A; Molinero V
    J Am Chem Soc; 2019 May; 141(18):7439-7452. PubMed ID: 30977366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ice-Nucleating and Antifreeze Proteins Recognize Ice through a Diversity of Anchored Clathrate and Ice-like Motifs.
    Hudait A; Odendahl N; Qiu Y; Paesani F; Molinero V
    J Am Chem Soc; 2018 Apr; 140(14):4905-4912. PubMed ID: 29564892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perturbation of bacterial ice nucleation activity by a grass antifreeze protein.
    Tomalty HE; Walker VK
    Biochem Biophys Res Commun; 2014 Sep; 452(3):636-41. PubMed ID: 25193694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrasting Behavior of Antifreeze Proteins: Ice Growth Inhibitors and Ice Nucleation Promoters.
    Eickhoff L; Dreischmeier K; Zipori A; Sirotinskaya V; Adar C; Reicher N; Braslavsky I; Rudich Y; Koop T
    J Phys Chem Lett; 2019 Mar; 10(5):966-972. PubMed ID: 30742446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ice Nucleation Properties of Ice-binding Proteins from Snow Fleas.
    Bissoyi A; Reicher N; Chasnitsky M; Arad S; Koop T; Rudich Y; Braslavsky I
    Biomolecules; 2019 Sep; 9(10):. PubMed ID: 31557956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preferential Ordering and Organization of Hydration Water Favor Nucleation of Ice by Ice-Nucleating Proteins over Antifreeze Proteins.
    Aich R; Pal P; Chakraborty S; Jana B
    J Phys Chem B; 2023 Jul; 127(27):6038-6048. PubMed ID: 37395194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membranes Are Decisive for Maximum Freezing Efficiency of Bacterial Ice Nucleators.
    Schwidetzky R; Sudera P; Backes AT; Pöschl U; Bonn M; Fröhlich-Nowoisky J; Meister K
    J Phys Chem Lett; 2021 Nov; 12(44):10783-10787. PubMed ID: 34723523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How Can Ice Emerge at 0 °C?
    Finkelstein AV; Garbuzynskiy SO; Melnik BS
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins.
    Hudait A; Moberg DR; Qiu Y; Odendahl N; Paesani F; Molinero V
    Proc Natl Acad Sci U S A; 2018 Aug; 115(33):8266-8271. PubMed ID: 29987018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of Tenebrio Molitor Antifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations.
    Ramya L; Ramakrishnan V
    Mol Inform; 2016 Jul; 35(6-7):268-77. PubMed ID: 27492241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and localization of an ice nucleating protein from a soil bacterium, Pseudomonas borealis.
    Vanderveer TL; Choi J; Miao D; Walker VK
    Cryobiology; 2014 Aug; 69(1):110-8. PubMed ID: 24930584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic Interactions Control the Functionality of Bacterial Ice Nucleators.
    Lukas M; Schwidetzky R; Kunert AT; Pöschl U; Fröhlich-Nowoisky J; Bonn M; Meister K
    J Am Chem Soc; 2020 Apr; 142(15):6842-6846. PubMed ID: 32223131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zero-sized effect of nano-particles and inverse homogeneous nucleation. Principles of freezing and antifreeze.
    Liu XY; Du N
    J Biol Chem; 2004 Feb; 279(7):6124-31. PubMed ID: 14602714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatics Trigger Interfacial Self-Assembly of Bacterial Ice Nucleators.
    Madzharova F; Bregnhøj M; Chatterley AS; Løvschall KB; Drace T; Andersen Dreyer LS; Boesen T; Weidner T
    Biomacromolecules; 2022 Feb; 23(2):505-512. PubMed ID: 34846123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice-nucleating proteins are activated by low temperatures to control the structure of interfacial water.
    Roeters SJ; Golbek TW; Bregnhøj M; Drace T; Alamdari S; Roseboom W; Kramer G; Šantl-Temkiv T; Finster K; Pfaendtner J; Woutersen S; Boesen T; Weidner T
    Nat Commun; 2021 Feb; 12(1):1183. PubMed ID: 33608518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen-Bonding and Hydrophobic Groups Contribute Equally to the Binding of Hyperactive Antifreeze and Ice-Nucleating Proteins to Ice.
    Hudait A; Qiu Y; Odendahl N; Molinero V
    J Am Chem Soc; 2019 May; 141(19):7887-7898. PubMed ID: 31020830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Aggregation and Molecular Size on the Ice Nucleation Efficiency of Proteins.
    Alsante AN; Thornton DCO; Brooks SD
    Environ Sci Technol; 2024 Mar; 58(10):4594-4605. PubMed ID: 38408303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential effects of growth temperature on ice nuclei active at different temperatures that are produced by cells of Pseudomonas syringae.
    Gurian-Sherman D; Lindow SE
    Cryobiology; 1995 Apr; 32(2):129-38. PubMed ID: 7743815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of hydrophobic and hydrogen-bond interactions on the binding affinity of antifreeze proteins to specific ice planes.
    Lee H
    J Mol Graph Model; 2019 Mar; 87():48-55. PubMed ID: 30502671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freezing from the inside: Ice nucleation in Escherichia coli and Escherichia coli ghosts by inner membrane bound ice nucleation protein InaZ.
    Kassmannhuber J; Mauri S; Rauscher M; Brait N; Schöner L; Witte A; Weidner T; Lubitz W
    Biointerphases; 2020 May; 15(3):031003. PubMed ID: 32429672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.