These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30977601)

  • 1. [Automatic Identifcation of Heart Block Precise Location Based on Sparse Connection Residual Network].
    Qi J; Zhang R; Shen Y; Chang S; Sha X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2019 Mar; 43(2):86-89. PubMed ID: 30977601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats.
    Oh SL; Ng EYK; Tan RS; Acharya UR
    Comput Biol Med; 2018 Nov; 102():278-287. PubMed ID: 29903630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Multi-instance Networks for Bundle Branch Block Detection from Multi-lead ECG.
    Hu J; Zhao W; Jia D; Yan C; Wang H; Li Z; Fang J; Yang M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():353-356. PubMed ID: 33018001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fuzzy clustering neural network architecture for classification of ECG arrhythmias.
    Ozbay Y; Ceylan R; Karlik B
    Comput Biol Med; 2006 Apr; 36(4):376-88. PubMed ID: 15878480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Deep residual convolutional neural network for recognition of electrocardiogram signal arrhythmias].
    Li D; Zhang H; Liu Z; Huang J; Wang T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):189-198. PubMed ID: 31016934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Detection Method of Bundle Branch Block from Multi-lead ECG.
    Hu J; Zhao W; Jia D; Yan C; Wang H; Li Z; You T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():79-82. PubMed ID: 31945849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification.
    Yildirim Ö
    Comput Biol Med; 2018 May; 96():189-202. PubMed ID: 29614430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression.
    Yang J; Bai Y; Li G; Liu M; Liu X
    Biomed Mater Eng; 2015; 26 Suppl 1():S1549-58. PubMed ID: 26405919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic detection of arrhythmias from an ECG signal using an auto-encoder and SVM classifier.
    Ojha MK; Wadhwani S; Wadhwani AK; Shukla A
    Phys Eng Sci Med; 2022 Jun; 45(2):665-674. PubMed ID: 35304901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic classification of heartbeats using neural network classifier based on a Bayesian framework.
    Karraz G; Magenes G
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4016-9. PubMed ID: 17946596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep convolutional neural network model to classify heartbeats.
    Acharya UR; Oh SL; Hagiwara Y; Tan JH; Adam M; Gertych A; Tan RS
    Comput Biol Med; 2017 Oct; 89():389-396. PubMed ID: 28869899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arrhythmia detection using deep convolutional neural network with long duration ECG signals.
    Yıldırım Ö; Pławiak P; Tan RS; Acharya UR
    Comput Biol Med; 2018 Nov; 102():411-420. PubMed ID: 30245122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [ECG pattern classification by feature searching algorithm based on maximal divergence].
    Cao Y; Fan Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):53-6. PubMed ID: 18435256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arrhythmia identification with two-lead electrocardiograms using artificial neural networks and support vector machines for a portable ECG monitor system.
    Liu SH; Cheng DC; Lin CM
    Sensors (Basel); 2013 Jan; 13(1):813-28. PubMed ID: 23303379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arrhythmia Classification with ECG signals based on the Optimization-Enabled Deep Convolutional Neural Network.
    Atal DK; Singh M
    Comput Methods Programs Biomed; 2020 Nov; 196():105607. PubMed ID: 32593973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards Automated Optimization of Residual Convolutional Neural Networks for Electrocardiogram Classification.
    Fki Z; Ammar B; Ayed MB
    Cognit Comput; 2023 Feb; ():1-11. PubMed ID: 36819737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The surface electrocardiogram predicts risk of heart block during right heart catheterization in patients with preexisting left bundle branch block: implications for the definition of complete left bundle branch block.
    Padanilam BJ; Morris KE; Olson JA; Rippy JS; Walsh MN; Subramanian N; Vidal A; Prystowsky EN; Steinberg LA
    J Cardiovasc Electrophysiol; 2010 Jul; 21(7):781-5. PubMed ID: 20132380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic QRS complex detection using two-level convolutional neural network.
    Xiang Y; Lin Z; Meng J
    Biomed Eng Online; 2018 Jan; 17(1):13. PubMed ID: 29378580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of Electrocardiogram Rhythms by GoogLeNet Deep Neural Network Architecture.
    Kim JH; Seo SY; Song CG; Kim KS
    J Healthc Eng; 2019; 2019():2826901. PubMed ID: 31183029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of strict left bundle branch block by neural network and a method to test detection consistency.
    Yang T; Gregg RE; Babaeizadeh S
    Physiol Meas; 2020 Mar; 41(2):025005. PubMed ID: 31962304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.