BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30977757)

  • 1. Theoretical insights into the formation and stability of radical oxygen species in cryptochromes.
    Mondal P; Huix-Rotllant M
    Phys Chem Chem Phys; 2019 Apr; 21(17):8874-8882. PubMed ID: 30977757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome - protonated and nonprotonated flavin radical-states.
    Paulus B; Bajzath C; Melin F; Heidinger L; Kromm V; Herkersdorf C; Benz U; Mann L; Stehle P; Hellwig P; Weber S; Schleicher E
    FEBS J; 2015 Aug; 282(16):3175-89. PubMed ID: 25879256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viability of superoxide-containing radical pairs as magnetoreceptors.
    Player TC; Hore PJ
    J Chem Phys; 2019 Dec; 151(22):225101. PubMed ID: 31837685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster.
    Kutta RJ; Archipowa N; Scrutton NS
    Phys Chem Chem Phys; 2018 Nov; 20(45):28767-28776. PubMed ID: 30417904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Explanations of Flavin Adenine Dinucleotide Binding in
    Sjulstok E; Solov'yov IA
    J Phys Chem Lett; 2020 May; 11(10):3866-3870. PubMed ID: 32330039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-Time Oxygen and Superoxide Localization in
    Salerno KM; Domenico J; Le NQ; Balakrishnan K; McQuillen RJ; Stiles CD; Solov'yov IA; Martino CF
    J Chem Inf Model; 2023 Nov; 63(21):6756-6767. PubMed ID: 37874902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling Drosophila melanogaster Cryptochrome Light Activation and Oxidation of the Kvβ Subunit Hyperkinetic NADPH Cofactor.
    Hong G; Pachter R; Ritz T
    J Phys Chem B; 2018 Jun; 122(25):6503-6510. PubMed ID: 29847128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residues at a Single Site Differentiate Animal Cryptochromes from Cyclobutane Pyrimidine Dimer Photolyases by Affecting the Proteins' Preferences for Reduced FAD.
    Xu L; Wen B; Wang Y; Tian C; Wu M; Zhu G
    Chembiochem; 2017 Jun; 18(12):1129-1137. PubMed ID: 28393477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absorption Spectra of FAD Embedded in Cryptochromes.
    Nielsen C; Nørby MS; Kongsted J; Solov'yov IA
    J Phys Chem Lett; 2018 Jul; 9(13):3618-3623. PubMed ID: 29905481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP binding and aspartate protonation enhance photoinduced electron transfer in plant cryptochrome.
    Cailliez F; Müller P; Gallois M; de la Lande A
    J Am Chem Soc; 2014 Sep; 136(37):12974-86. PubMed ID: 25157750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of Cys392, Asp393, and ATP on the FAD Binding, Photoreduction, and the Stability of the Radical State of Chlamydomonas reinhardtii Cryptochrome.
    Xu L; Wen B; Shao W; Yao P; Zheng W; Zhou Z; Zhang Y; Zhu G
    Chembiochem; 2019 Apr; 20(7):940-948. PubMed ID: 30548754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception.
    Müller P; Ahmad M
    J Biol Chem; 2011 Jun; 286(24):21033-40. PubMed ID: 21467031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of light-induced spin-correlated radical pairs in cryptochrome.
    Weber S; Biskup T; Okafuji A; Marino AR; Berthold T; Link G; Hitomi K; Getzoff ED; Schleicher E; Norris JR
    J Phys Chem B; 2010 Nov; 114(45):14745-54. PubMed ID: 20684534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative radical pairs for cryptochrome-based magnetoreception.
    Lee AA; Lau JC; Hogben HJ; Biskup T; Kattnig DR; Hore PJ
    J R Soc Interface; 2014 Jun; 11(95):20131063. PubMed ID: 24671932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ascorbic acid may not be involved in cryptochrome-based magnetoreception.
    Nielsen C; Kattnig DR; Sjulstok E; Hore PJ; Solov'yov IA
    J R Soc Interface; 2017 Dec; 14(137):. PubMed ID: 29263128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the steric impact of flavin adenine dinucleotide in Drosophila melanogaster cryptochrome function.
    Masiero A; Aufiero S; Minervini G; Moro S; Costa R; Tosatto SC
    Biochem Biophys Res Commun; 2014 Aug; 450(4):1606-11. PubMed ID: 25026553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UV-visible absorption spectrum of FAD and its reduced forms embedded in a cryptochrome protein.
    Schwinn K; Ferré N; Huix-Rotllant M
    Phys Chem Chem Phys; 2020 Jun; 22(22):12447-12455. PubMed ID: 32458897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoactivation of cryptochromes from Drosophila melanogaster and Sylvia borin: insight into the chemical compass mechanism by computational investigation.
    Hong G; Pachter R
    J Phys Chem B; 2015 Mar; 119(10):3883-92. PubMed ID: 25710635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What accounts for the different functions in photolyases and cryptochromes: a computational study of proton transfers to FAD.
    Holub D; Kubař T; Mast T; Elstner M; Gillet N
    Phys Chem Chem Phys; 2019 Jun; 21(22):11956-11966. PubMed ID: 31134233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.
    Ganguly A; Manahan CC; Top D; Yee EF; Lin C; Young MW; Thiel W; Crane BR
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):10073-8. PubMed ID: 27551082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.