These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30977960)

  • 1. Prediction of Protein Metal Binding Sites Using Deep Neural Networks.
    Haberal İ; Oğul H
    Mol Inform; 2019 Jul; 38(7):e1800169. PubMed ID: 30977960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks.
    Passerini A; Punta M; Ceroni A; Rost B; Frasconi P
    Proteins; 2006 Nov; 65(2):305-16. PubMed ID: 16927295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein secondary structure prediction improved by recurrent neural networks integrated with two-dimensional convolutional neural networks.
    Guo Y; Wang B; Li W; Yang B
    J Bioinform Comput Biol; 2018 Oct; 16(5):1850021. PubMed ID: 30419785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using two-dimensional convolutional neural networks for identifying GTP binding sites in Rab proteins.
    Le NQK; Ho QT; Ou YY
    J Bioinform Comput Biol; 2019 Feb; 17(1):1950005. PubMed ID: 30866734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction.
    Guo Y; Li W; Wang B; Liu H; Zhou D
    BMC Bioinformatics; 2019 Jun; 20(1):341. PubMed ID: 31208331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Bioinformatics and Deep Learning of Metalloproteins: Recent Advances and Applications.
    Andreini C; Rosato A
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying short disorder-to-order binding regions in disordered proteins with a deep convolutional neural network method.
    Fang C; Moriwaki Y; Tian A; Li C; Shimizu K
    J Bioinform Comput Biol; 2019 Feb; 17(1):1950004. PubMed ID: 30866736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PaleAle 5.0: prediction of protein relative solvent accessibility by deep learning.
    Kaleel M; Torrisi M; Mooney C; Pollastri G
    Amino Acids; 2019 Sep; 51(9):1289-1296. PubMed ID: 31388850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning methods for protein torsion angle prediction.
    Li H; Hou J; Adhikari B; Lyu Q; Cheng J
    BMC Bioinformatics; 2017 Sep; 18(1):417. PubMed ID: 28923002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.
    Lu X; Chen Y; Li X
    IEEE Trans Image Process; 2018 Jan.; 27(1):106-120. PubMed ID: 28952940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualizing convolutional neural network protein-ligand scoring.
    Hochuli J; Helbling A; Skaist T; Ragoza M; Koes DR
    J Mol Graph Model; 2018 Sep; 84():96-108. PubMed ID: 29940506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal3D: a general deep learning framework for accurate metal ion location prediction in proteins.
    Dürr SL; Levy A; Rothlisberger U
    Nat Commun; 2023 May; 14(1):2713. PubMed ID: 37169763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences.
    Tsubaki M; Tomii K; Sese J
    Bioinformatics; 2019 Jan; 35(2):309-318. PubMed ID: 29982330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convolutional neural network based on SMILES representation of compounds for detecting chemical motif.
    Hirohara M; Saito Y; Koda Y; Sato K; Sakakibara Y
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):526. PubMed ID: 30598075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-Protein Interaction Interface Residue Pair Prediction Based on Deep Learning Architecture.
    Zhao Z; Gong X
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1753-1759. PubMed ID: 28541224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using multiple convolutional window scanning of convolutional neural network for an efficient prediction of ATP-binding sites in transport proteins.
    Nguyen TT; Chen S; Ho QT; Ou YY
    Proteins; 2022 Jul; 90(7):1486-1492. PubMed ID: 35246878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep neural network approach for learning intrinsic protein-RNA binding preferences.
    Ben-Bassat I; Chor B; Orenstein Y
    Bioinformatics; 2018 Sep; 34(17):i638-i646. PubMed ID: 30423078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.