BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 30978195)

  • 1. Specific mechanism of Acidithiobacillus caldus extracellular polymeric substances in the bioleaching of copper-bearing sulfide ore.
    Feng S; Li K; Huang Z; Tong Y; Yang H
    PLoS One; 2019; 14(4):e0213945. PubMed ID: 30978195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced "contact mechanism" for interaction of extracellular polymeric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus.
    Huang Z; Feng S; Tong Y; Yang H
    J Environ Manage; 2019 Jul; 242():11-21. PubMed ID: 31026798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of L-cysteine on Ni-Cu sulfide and marmatite bioleaching by Acidithiobacillus caldus.
    He Z; Gao F; Zhong H; Hu Y
    Bioresour Technol; 2009 Feb; 100(3):1383-7. PubMed ID: 18829304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The adaptation mechanisms of Acidithiobacillus caldus CCTCC M 2018054 to extreme acid stress: Bioleaching performance, physiology, and transcriptomics.
    Feng S; Qiu Y; Huang Z; Yin Y; Zhang H; Zhu D; Tong Y; Yang H
    Environ Res; 2021 Aug; 199():111341. PubMed ID: 34015291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of diurnal temperature range on bioleaching of sulfide ore by an artificial microbial consortium.
    Fang X; Sun S; Liao X; Li S; Zhou S; Gan Q; Zeng L; Guan Z
    Sci Total Environ; 2022 Feb; 806(Pt 1):150234. PubMed ID: 34562759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pathway of the generation of acid mine drainage and release of arsenic in the bioleaching of orpiment.
    Shen C; Zhang G; Li K; Yang C
    Chemosphere; 2022 Jul; 298():134287. PubMed ID: 35283152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneously enhance iron/sulfur metabolism in column bioleaching of chalcocite by pyrite and sulfur oxidizers based on joint utilization of waste resource.
    Feng S; Yin Y; Yin Z; Zhang H; Zhu D; Tong Y; Yang H
    Environ Res; 2021 Mar; 194():110702. PubMed ID: 33400950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of bioleaching behaviors of different compositional sphalerite using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus caldus.
    Xia L; Dai S; Yin C; Hu Y; Liu J; Qiu G
    J Ind Microbiol Biotechnol; 2009 Jun; 36(6):845-51. PubMed ID: 19333635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A designed moderately thermophilic consortia with a better performance for leaching high grade fine lead-zinc sulfide ore.
    Zhou S; Liao X; Li S; Fang X; Guan Z; Ye M; Sun S
    J Environ Manage; 2022 Feb; 303():114192. PubMed ID: 34861501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic transcriptional analysis on copper tolerance in moderate thermophilic bioleaching microorganism Acidithiobacillus caldus.
    Feng S; Hou S; Cui Y; Tong Y; Yang H
    J Ind Microbiol Biotechnol; 2020 Jan; 47(1):21-33. PubMed ID: 31758413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterotrophic microorganism Rhodotorula mucilaginosa R30 improves tannery sludge bioleaching through elevating dissolved CO2 and extracellular polymeric substances levels in bioleach solution as well as scavenging toxic DOM to Acidithiobacillus species.
    Wang S; Zheng G; Zhou L
    Water Res; 2010 Oct; 44(18):5423-31. PubMed ID: 20633920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the role of extracellular polymeric substances in the antimony leaching of tailings by Acidithiobacillus ferrooxidans.
    Song X; Yang A; Hu X; Niu AP; Cao Y; Zhang Q
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):17695-17708. PubMed ID: 36203043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced metal bioleaching mechanisms of extracellular polymeric substance for obsolete LiNi
    Wang J; Cui Y; Chu H; Tian B; Li H; Zhang M; Xin B
    J Environ Manage; 2022 Sep; 318():115429. PubMed ID: 35717690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Gene function and microbial community structure in sulfide minerals bioleaching system based on microarray analysis].
    Shen L; Liu X; Qiu G
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):968-74. PubMed ID: 18807978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms.
    Deng S; Gu G; Wu Z; Xu X
    Chemosphere; 2017 Oct; 185():403-411. PubMed ID: 28710989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel and highly efficient system for chalcopyrite bioleaching by mixed strains of Acidithiobacillus.
    Feng S; Yang H; Xin Y; Gao K; Yang J; Liu T; Zhang L; Wang W
    Bioresour Technol; 2013 Feb; 129():456-62. PubMed ID: 23266846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioleaching for detoxification of waste flotation tailings: Relationship between EPS substances and bioleaching behavior.
    Ye M; Liang J; Liao X; Li L; Feng X; Qian W; Zhou S; Sun S
    J Environ Manage; 2021 Feb; 279():111795. PubMed ID: 33338773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Introduction of Exogenous Strain
    Liu Y; Wang J; Hou H; Chen G; Liu H; Liu X; Shen L
    Front Microbiol; 2019; 10():3034. PubMed ID: 32010095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans.
    Zhao H; Wang J; Hu M; Qin W; Zhang Y; Qiu G
    Bioresour Technol; 2013 Dec; 149():71-6. PubMed ID: 24084207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching.
    Mitsunobu S; Zhu M; Takeichi Y; Ohigashi T; Suga H; Jinno M; Makita H; Sakata M; Ono K; Mase K; Takahashi Y
    Microbes Environ; 2016; 31(1):63-9. PubMed ID: 26947441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.