These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 30978295)
1. Organophosphorus Pesticides Induce Cytokine Release from Differentiated Human THP1 Cells. Proskocil BJ; Grodzki ACG; Jacoby DB; Lein PJ; Fryer AD Am J Respir Cell Mol Biol; 2019 Nov; 61(5):620-630. PubMed ID: 30978295 [TBL] [Abstract][Full Text] [Related]
2. The influence of sensitization on mechanisms of organophosphorus pesticide-induced airway hyperreactivity. Proskocil BJ; Bruun DA; Garg JA; Villagomez CC; Jacoby DB; Lein PJ; Fryer AD Am J Respir Cell Mol Biol; 2015 Nov; 53(5):738-47. PubMed ID: 25897622 [TBL] [Abstract][Full Text] [Related]
3. Organophosphorus insecticides induce airway hyperreactivity by decreasing neuronal M2 muscarinic receptor function independent of acetylcholinesterase inhibition. Lein PJ; Fryer AD Toxicol Sci; 2005 Jan; 83(1):166-76. PubMed ID: 15470232 [TBL] [Abstract][Full Text] [Related]
4. Organophosphorus pesticides decrease M2 muscarinic receptor function in guinea pig airway nerves via indirect mechanisms. Proskocil BJ; Bruun DA; Thompson CM; Fryer AD; Lein PJ PLoS One; 2010 May; 5(5):e10562. PubMed ID: 20479945 [TBL] [Abstract][Full Text] [Related]
5. Macrophage TNF-α mediates parathion-induced airway hyperreactivity in guinea pigs. Proskocil BJ; Bruun DA; Jacoby DB; van Rooijen N; Lein PJ; Fryer AD Am J Physiol Lung Cell Mol Physiol; 2013 Apr; 304(8):L519-29. PubMed ID: 23377347 [TBL] [Abstract][Full Text] [Related]
6. Antigen sensitization influences organophosphorus pesticide-induced airway hyperreactivity. Proskocil BJ; Bruun DA; Lorton JK; Blensly KC; Jacoby DB; Lein PJ; Fryer AD Environ Health Perspect; 2008 Mar; 116(3):381-8. PubMed ID: 18335107 [TBL] [Abstract][Full Text] [Related]
7. Maturation-dependent effects of chlorpyrifos and parathion and their oxygen analogs on acetylcholinesterase and neuronal and glial markers in aggregating brain cell cultures. Monnet-Tschudi F; Zurich MG; Schilter B; Costa LG; Honegger P Toxicol Appl Pharmacol; 2000 Jun; 165(3):175-83. PubMed ID: 10873710 [TBL] [Abstract][Full Text] [Related]
8. Comparative presynaptic neurochemical changes in rat striatum following exposure to chlorpyrifos or parathion. Liu J; Pope CN J Toxicol Environ Health A; 1998 Apr; 53(7):531-44. PubMed ID: 9561967 [TBL] [Abstract][Full Text] [Related]
9. Occurrence and relationship of organophosphorus insecticides and their degradation products in the atmosphere in Western Canada agricultural regions. Raina R; Hall P; Sun L Environ Sci Technol; 2010 Nov; 44(22):8541-6. PubMed ID: 20977269 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of organophosphorus pesticide toxicity in the context of airway hyperreactivity and asthma. Shaffo FC; Grodzki AC; Fryer AD; Lein PJ Am J Physiol Lung Cell Mol Physiol; 2018 Oct; 315(4):L485-L501. PubMed ID: 29952220 [TBL] [Abstract][Full Text] [Related]
11. Diazinon, chlorpyrifos and parathion are metabolised by multiple cytochromes P450 in human liver. Mutch E; Williams FM Toxicology; 2006 Jul; 224(1-2):22-32. PubMed ID: 16757081 [TBL] [Abstract][Full Text] [Related]
12. Organophosphate insecticides disturb neuronal network development and function via non-AChE mediated mechanisms. van Melis LVJ; Heusinkveld HJ; Langendoen C; Peters A; Westerink RHS Neurotoxicology; 2023 Jan; 94():35-45. PubMed ID: 36347328 [TBL] [Abstract][Full Text] [Related]
13. Acute disturbance of calcium homeostasis in PC12 cells as a novel mechanism of action for (sub)micromolar concentrations of organophosphate insecticides. Meijer M; Hamers T; Westerink RHS Neurotoxicology; 2014 Jul; 43():110-116. PubMed ID: 24495583 [TBL] [Abstract][Full Text] [Related]
14. Blood cholinesterases as human biomarkers of organophosphorus pesticide exposure. Nigg HN; Knaak JB Rev Environ Contam Toxicol; 2000; 163():29-111. PubMed ID: 10771584 [TBL] [Abstract][Full Text] [Related]
15. In vitro effects of organophosphorus anticholinesterases on muscarinic receptor-mediated inhibition of acetylcholine release in rat striatum. Liu J; Chakraborti T; Pope C Toxicol Appl Pharmacol; 2002 Jan; 178(2):102-8. PubMed ID: 11814330 [TBL] [Abstract][Full Text] [Related]
16. Bioactivation and detoxification of organophosphorus pesticides in freshwater planarians shares similarities with humans. Ireland D; Rabeler C; Gong T; Collins ES Arch Toxicol; 2022 Dec; 96(12):3233-3243. PubMed ID: 36173421 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of organophosphate insecticide-induced airway hyperreactivity. Fryer AD; Lein PJ; Howard AS; Yost BL; Beckles RA; Jett DA Am J Physiol Lung Cell Mol Physiol; 2004 May; 286(5):L963-9. PubMed ID: 14704222 [TBL] [Abstract][Full Text] [Related]
18. Effect of organophosphorus insecticides and their metabolites on astroglial cell proliferation. Guizzetti M; Pathak S; Giordano G; Costa LG Toxicology; 2005 Nov; 215(3):182-90. PubMed ID: 16102884 [TBL] [Abstract][Full Text] [Related]
19. Detection, quantification, and microlocalisation of targets of pesticides using microchannel plate autoradiographic imagers. Tarhoni MH; Vigneswara V; Smith M; Anderson S; Wigmore P; Lees JE; Ray DE; Carter WG Molecules; 2011 Oct; 16(10):8535-51. PubMed ID: 21989313 [TBL] [Abstract][Full Text] [Related]
20. Organophosphorus pesticide ozonation and formation of oxon intermediates. Wu J; Lan C; Chan GY Chemosphere; 2009 Aug; 76(9):1308-14. PubMed ID: 19539977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]