These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30978459)

  • 1. Molecular structure of sauropsid β-keratins from tuatara (Sphenodon punctatus).
    Parry DAD; Fraser RDB; Alibardi L; Rutherford KM; Gemmell N
    J Struct Biol; 2019 Jul; 207(1):21-28. PubMed ID: 30978459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Filamentous Structure of Hard β-Keratins in the Epidermal Appendages of Birds and Reptiles.
    Fraser RD; Parry DA
    Subcell Biochem; 2017; 82():231-252. PubMed ID: 28101864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review: Evolution and diversification of corneous beta-proteins, the characteristic epidermal proteins of reptiles and birds.
    Holthaus KB; Eckhart L; Dalla Valle L; Alibardi L
    J Exp Zool B Mol Dev Evol; 2018 Dec; 330(8):438-453. PubMed ID: 30637919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sauropsids Cornification is Based on Corneous Beta-Proteins, a Special Type of Keratin-Associated Corneous Proteins of the Epidermis.
    Alibardi L
    J Exp Zool B Mol Dev Evol; 2016 Sep; 326(6):338-351. PubMed ID: 27506161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid sequence homologies in the hard keratins of birds and reptiles, and their implications for molecular structure and physical properties.
    Fraser RD; Parry DA
    J Struct Biol; 2014 Dec; 188(3):213-24. PubMed ID: 25448888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cornification in reptilian epidermis occurs through the deposition of keratin-associated beta-proteins (beta-keratins) onto a scaffold of intermediate filament keratins.
    Alibardi L
    J Morphol; 2013 Feb; 274(2):175-93. PubMed ID: 23065677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structural basis of the filament-matrix texture in the avian/reptilian group of hard β-keratins.
    Fraser RD; Parry DA
    J Struct Biol; 2011 Feb; 173(2):391-405. PubMed ID: 20869443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deleterious mutations of a claw keratin in multiple taxa of reptiles.
    Dalla Valle L; Benato F; Rossi C; Alibardi L; Tschachler E; Eckhart L
    J Mol Evol; 2011 Mar; 72(3):265-73. PubMed ID: 21181402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid evolution of Beta-keratin genes contribute to phenotypic differences that distinguish turtles and birds from other reptiles.
    Li YI; Kong L; Ponting CP; Haerty W
    Genome Biol Evol; 2013; 5(5):923-33. PubMed ID: 23576313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of the ß-Keratin Filaments and Keratin Intermediate Filaments in the Epidermal Appendages of Birds and Reptiles (Sauropsids).
    Parry DAD
    Genes (Basel); 2021 Apr; 12(4):. PubMed ID: 33920614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunocytochemistry and protein analysis suggest that reptilian claws contain small high cysteine-glycine proteins.
    Alibardi L; Toni M
    Tissue Cell; 2009 Jun; 41(3):180-92. PubMed ID: 19058825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes.
    Alibardi L; Dalla Valle L; Nardi A; Toni M
    J Anat; 2009 Apr; 214(4):560-86. PubMed ID: 19422429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Keratin intermediate filament chains in tuatara (Sphenodon punctatus): A comparison of tuatara and human sequences.
    Parry DAD; Winter DJ
    J Struct Biol; 2021 Mar; 213(1):107706. PubMed ID: 33577903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution and characterization of keratins in the epidermis of the tuatara (Sphenodon punctatus; Lepidosauria, Reptilia).
    Alibardi L; Toni M
    Zoolog Sci; 2006 Sep; 23(9):801-7. PubMed ID: 17043402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular evolution and expression of archosaurian β-keratins: diversification and expansion of archosaurian β-keratins and the origin of feather β-keratins.
    Greenwold MJ; Sawyer RH
    J Exp Zool B Mol Dev Evol; 2013 Sep; 320(6):393-405. PubMed ID: 23744807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of epidermal differentiation genes of the tuatara provides insights into the early evolution of lepidosaurian skin.
    Holthaus KB; Alibardi L; Tschachler E; Eckhart L
    Sci Rep; 2020 Jul; 10(1):12844. PubMed ID: 32732894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunolocalization of epidermal differentiation complex proteins reveals distinct molecular compositions of cells that control structure and mechanical properties of avian skin appendages.
    Alibardi L; Eckhart L
    J Morphol; 2021 Jun; 282(6):917-933. PubMed ID: 33830534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular organization of the beta-sheet region in Corneous beta-proteins (beta-keratins) of sauropsids explains its stability and polymerization into filaments.
    Calvaresi M; Eckhart L; Alibardi L
    J Struct Biol; 2016 Jun; 194(3):282-91. PubMed ID: 26965557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular structure of reptilian keratin.
    Fraser RD; Parry DA
    Int J Biol Macromol; 1996 Oct; 19(3):207-11. PubMed ID: 8910061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic organization and molecular phylogenies of the beta (beta) keratin multigene family in the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata): implications for feather evolution.
    Greenwold MJ; Sawyer RH
    BMC Evol Biol; 2010 May; 10():148. PubMed ID: 20482795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.