BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 30978504)

  • 1. AFM-based single-molecule observation of the conformational changes of DNA structures.
    Endo M
    Methods; 2019 Oct; 169():3-10. PubMed ID: 30978504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Observation of Dynamic Movement of DNA Molecules in DNA Origami Imaged Using High-Speed AFM.
    Endo M; Sugiyama H
    Methods Mol Biol; 2018; 1814():213-224. PubMed ID: 29956235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Molecule Visualization of B-Z Transition in DNA Origami Using High-Speed AFM.
    Endo M; Sugiyama H
    Methods Mol Biol; 2023; 2651():241-250. PubMed ID: 36892772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Molecule Observation of the Photoregulated Conformational Dynamics of DNA Origami Nanoscissors.
    Willner EM; Kamada Y; Suzuki Y; Emura T; Hidaka K; Dietz H; Sugiyama H; Endo M
    Angew Chem Int Ed Engl; 2017 Nov; 56(48):15324-15328. PubMed ID: 29044955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct and single-molecule visualization of the solution-state structures of G-hairpin and G-triplex intermediates.
    Rajendran A; Endo M; Hidaka K; Sugiyama H
    Angew Chem Int Ed Engl; 2014 Apr; 53(16):4107-12. PubMed ID: 24623581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Speed Atomic Force Microscopy Visualization of Protein-DNA Interactions Using DNA Origami Frames.
    Willaert RG; Kasas S
    Methods Mol Biol; 2022; 2516():157-167. PubMed ID: 35922627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Assessment of Tip Effects in Single-Molecule High-Speed Atomic Force Microscopy Using DNA Origami Substrates.
    Kielar C; Zhu S; Grundmeier G; Keller A
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14336-14341. PubMed ID: 32485088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Molecule Imaging of Enzymatic Reactions on DNA Origami.
    Yan A; Sun L; Li D
    Methods Mol Biol; 2023; 2639():131-145. PubMed ID: 37166715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Observation of the Formation and Dissociation of Double-Stranded DNA Containing G-Quadruplex/i-Motif Sequences in the DNA Origami Frame Using High-Speed AFM.
    Endo M; Xing X; Sugiyama H
    Methods Mol Biol; 2019; 2035():299-308. PubMed ID: 31444757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing tethered targets of a single biomolecular complex with atomic force microscopy.
    Wu N; Wang Q; Zhou X; Jia SS; Fan Y; Hu J; Li B
    J Mol Recognit; 2013 Dec; 26(12):700-4. PubMed ID: 24277616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AFM Imaging of Hybridization Chain Reaction Mediated Signal Transmission between Two DNA Origami Structures.
    Helmig S; Gothelf KV
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13633-13636. PubMed ID: 28868629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Molecule Nanomechanical Genotyping with DNA Origami-Based Shape IDs.
    Li Q; Chao J; Zhang H; Fan C
    Methods Mol Biol; 2023; 2639():147-156. PubMed ID: 37166716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Molecule Manipulation of the Duplex Formation and Dissociation at the G-Quadruplex/i-Motif Site in the DNA Nanostructure.
    Endo M; Xing X; Zhou X; Emura T; Hidaka K; Tuesuwan B; Sugiyama H
    ACS Nano; 2015 Oct; 9(10):9922-9. PubMed ID: 26371377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Molecule Visualization of the Activity of a Zn(2+)-Dependent DNAzyme.
    Endo M; Takeuchi Y; Suzuki Y; Emura T; Hidaka K; Wang F; Willner I; Sugiyama H
    Angew Chem Int Ed Engl; 2015 Sep; 54(36):10550-4. PubMed ID: 26195344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Measurement of Spatial Effects of DNA Origami on Molecular Binding Reactions Detected using Atomic Force Microscopy.
    Zhang P; Wang F; Liu W; Mao X; Hao C; Zhang Y; Fan C; Hu J; Wang L; Li B
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21973-21981. PubMed ID: 31117423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy.
    Kuzuya A; Sakai Y; Yamazaki T; Xu Y; Komiyama M
    Nat Commun; 2011 Aug; 2():449. PubMed ID: 21863016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Assembly of DNA Origami on a Lipid Bilayer Observed Using High-Speed Atomic Force Microscopy.
    Endo M
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular processes studied at a single-molecule level using DNA origami nanostructures and atomic force microscopy.
    Bald I; Keller A
    Molecules; 2014 Sep; 19(9):13803-23. PubMed ID: 25191873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.