These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
422 related articles for article (PubMed ID: 30978709)
1. Intelligent inverse treatment planning via deep reinforcement learning, a proof-of-principle study in high dose-rate brachytherapy for cervical cancer. Shen C; Gonzalez Y; Klages P; Qin N; Jung H; Chen L; Nguyen D; Jiang SB; Jia X Phys Med Biol; 2019 May; 64(11):115013. PubMed ID: 30978709 [TBL] [Abstract][Full Text] [Related]
2. The development of a deep reinforcement learning network for dose-volume-constrained treatment planning in prostate cancer intensity modulated radiotherapy. Sprouts D; Gao Y; Wang C; Jia X; Shen C; Chi Y Biomed Phys Eng Express; 2022 Jun; 8(4):. PubMed ID: 35523130 [TBL] [Abstract][Full Text] [Related]
3. Deep reinforcement learning for treatment planning in high-dose-rate cervical brachytherapy. Pu G; Jiang S; Yang Z; Hu Y; Liu Z Phys Med; 2022 Feb; 94():1-7. PubMed ID: 34959169 [TBL] [Abstract][Full Text] [Related]
4. Operating a treatment planning system using a deep-reinforcement learning-based virtual treatment planner for prostate cancer intensity-modulated radiation therapy treatment planning. Shen C; Nguyen D; Chen L; Gonzalez Y; McBeth R; Qin N; Jiang SB; Jia X Med Phys; 2020 Jun; 47(6):2329-2336. PubMed ID: 32141086 [TBL] [Abstract][Full Text] [Related]
5. Improving efficiency of training a virtual treatment planner network via knowledge-guided deep reinforcement learning for intelligent automatic treatment planning of radiotherapy. Shen C; Chen L; Gonzalez Y; Jia X Med Phys; 2021 Apr; 48(4):1909-1920. PubMed ID: 33432646 [TBL] [Abstract][Full Text] [Related]
6. A hierarchical deep reinforcement learning framework for intelligent automatic treatment planning of prostate cancer intensity modulated radiation therapy. Shen C; Chen L; Jia X Phys Med Biol; 2021 Jun; 66(13):. PubMed ID: 34107460 [No Abstract] [Full Text] [Related]
7. Predicting treatment plan approval probability for high-dose-rate brachytherapy of cervical cancer using adversarial deep learning. Gao Y; Gonzalez Y; Nwachukwu C; Albuquerque K; Jia X Phys Med Biol; 2024 Apr; 69(9):. PubMed ID: 38537309 [No Abstract] [Full Text] [Related]
8. Automatic inverse treatment planning of Gamma Knife radiosurgery via deep reinforcement learning. Liu Y; Shen C; Wang T; Zhang J; Yang X; Liu T; Kahn S; Shu HK; Tian Z Med Phys; 2022 May; 49(5):2877-2889. PubMed ID: 35213936 [TBL] [Abstract][Full Text] [Related]
9. Automatic bi-objective parameter tuning for inverse planning of high-dose-rate prostate brachytherapy. Maree SC; Bosman PAN; van Wieringen N; Niatsetski Y; Pieters BR; Bel A; Alderliesten T Phys Med Biol; 2020 Apr; 65(7):075009. PubMed ID: 32028270 [TBL] [Abstract][Full Text] [Related]
10. Asymmetric dose-volume optimization with smoothness control for rotating-shield brachytherapy. Liu Y; Flynn RT; Kim Y; Wu X Med Phys; 2014 Nov; 41(11):111709. PubMed ID: 25370623 [TBL] [Abstract][Full Text] [Related]
11. Particle swarm optimizer for weighting factor selection in intensity-modulated radiation therapy optimization algorithms. Yang J; Zhang P; Zhang L; Shu H; Li B; Gui Z Phys Med; 2017 Jan; 33():136-145. PubMed ID: 28089602 [TBL] [Abstract][Full Text] [Related]
12. Implementation and evaluation of an intelligent automatic treatment planning robot for prostate cancer stereotactic body radiation therapy. Gao Y; Shen C; Jia X; Kyun Park Y Radiother Oncol; 2023 Jul; 184():109685. PubMed ID: 37120103 [TBL] [Abstract][Full Text] [Related]
13. 3D inverse treatment planning for the tandem and ovoid applicator in cervical cancer. Dewitt KD; Hsu IC; Speight J; Weinberg VK; Lessard E; Pouliot J Int J Radiat Oncol Biol Phys; 2005 Nov; 63(4):1270-4. PubMed ID: 16253782 [TBL] [Abstract][Full Text] [Related]
14. Investigating the role of constrained CVT and CVT in HIPO inverse planning for HDR brachytherapy of prostate cancer. Sachpazidis I; Hense J; Mavroidis P; Gainey M; Baltas D Med Phys; 2019 Jul; 46(7):2955-2968. PubMed ID: 31055834 [TBL] [Abstract][Full Text] [Related]
15. Dosimetric and Radiobiological Evaluation of Hybrid Inverse Planning and Optimization for Cervical Cancer Brachytherapy. Matias Ldos S; Palmqvist T; Wolke J; Nilsson J; Beskow C; Maphossa AM; Toma-Dasu I Anticancer Res; 2015 Nov; 35(11):6091-6. PubMed ID: 26504034 [TBL] [Abstract][Full Text] [Related]
16. Human-like intelligent automatic treatment planning of head and neck cancer radiation therapy. Gao Y; Kyun Park Y; Jia X Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38744304 [No Abstract] [Full Text] [Related]
17. Dosimetric comparison of volume-based and inverse planning simulated annealing-based dose optimizations for high-dose rate brachytherapy. Pelagade S; Maddirala HR; Misra R; Suryanarayan U; Neema JP Med Dosim; 2015; 40(3):235-9. PubMed ID: 25795565 [TBL] [Abstract][Full Text] [Related]
18. Optimization for high-dose-rate brachytherapy of cervical cancer with adaptive simulated annealing and gradient descent. Yao R; Templeton AK; Liao Y; Turian JV; Kiel KD; Chu JC Brachytherapy; 2014; 13(4):352-60. PubMed ID: 24359671 [TBL] [Abstract][Full Text] [Related]
19. A GPU-based multi-criteria optimization algorithm for HDR brachytherapy. Bélanger C; Cui S; Ma Y; Després P; Adam M Cunha J; Beaulieu L Phys Med Biol; 2019 May; 64(10):105005. PubMed ID: 30970341 [TBL] [Abstract][Full Text] [Related]