These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30978977)

  • 1. A Fast Binocular Localisation Method for AUV Docking.
    Zhong L; Li D; Lin M; Lin R; Yang C
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30978977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smart vector-inspired optical vision guiding method for autonomous underwater vehicle docking and formation.
    Zhang Y; Wang X; Lei P; Wang S; Yang Y; Sun L; Zhou Y
    Opt Lett; 2022 Jun; 47(11):2919-2922. PubMed ID: 35648964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual Navigation for Recovering an AUV by Another AUV in Shallow Water.
    Liu S; Xu H; Lin Y; Gao L
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Low-Cost Electromagnetic Docking Guidance System for Micro Autonomous Underwater Vehicles.
    Peng S; Liu J; Wu J; Li C; Liu B; Cai W; Yu H
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30736464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Improved Localization Method for the Transition between Autonomous Underwater Vehicle Homing and Docking.
    Lin R; Zhang F; Li D; Lin M; Zhou G; Yang C
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33918285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Probabilistic and Highly Efficient Topology Control Algorithm for Underwater Cooperating AUV Networks.
    Li N; Cürüklü B; Bastos J; Sucasas V; Fernandez JAS; Rodriguez J
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28471387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-Gathering Scheme Using AUVs in Large-Scale Underwater Sensor Networks: A Multihop Approach.
    Khan JU; Cho HS
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27706042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Event-Based Circular Detection for AUV Docking Based on Spiking Neural Network.
    Zhang F; Zhong Y; Chen L; Wang Z
    Front Neurorobot; 2021; 15():815144. PubMed ID: 35095459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast Underwater Optical Beacon Finding and High Accuracy Visual Ranging Method Based on Deep Learning.
    Zhang B; Zhong P; Yang F; Zhou T; Shen L
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. I-AUV Docking and Panel Intervention at Sea.
    Palomeras N; Peñalver A; Massot-Campos M; Negre PL; Fernández JJ; Ridao P; Sanz PJ; Oliver-Codina G
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27754348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Underwater optical guiding and communication solution for the AUV and seafloor node.
    Chen Y; Duan Z; Zheng F; Guo Y; Xia Q
    Appl Opt; 2022 Aug; 61(24):7059-7070. PubMed ID: 36256322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Shape Reconstruction and Measurement Method for Spherical Hedges Using Binocular Vision.
    Zhang Y; Gu J; Rao T; Lai H; Zhang B; Zhang J; Yin Y
    Front Plant Sci; 2022; 13():849821. PubMed ID: 35599905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Close-Range Tracking of Underwater Vehicles Using Light Beacons.
    Bosch J; Gracias N; Ridao P; Istenič K; Ribas D
    Sensors (Basel); 2016 Mar; 16(4):429. PubMed ID: 27023547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Adaptive Prediction Target Search Algorithm for Multi-AUVs in an Unknown 3D Environment.
    Li J; Zhang J; Zhang G; Zhang B
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Underwater Target Tracking Using Forward-Looking Sonar for Autonomous Underwater Vehicles.
    Zhang T; Liu S; He X; Huang H; Hao K
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Underwater Docking Approach and Homing to Enable Persistent Operation.
    Page BR; Lambert R; Chavez-Galaviz J; Mahmoudian N
    Front Robot AI; 2021; 8():621755. PubMed ID: 33791340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinforcement Learning-Based Multi-AUV Adaptive Trajectory Planning for Under-Ice Field Estimation.
    Wang C; Wei L; Wang Z; Song M; Mahmoudian N
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30424017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering Cloud-Like Model-Based Targets Underwater Tracking for AUVs.
    Sheng M; Tang S; Qin H; Wan L
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30658478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Evaluation on Depth Control Using Improved Model Predictive Control for Autonomous Underwater Vehicle (AUVs).
    Yao F; Yang C; Liu X; Zhang M
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30018268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple Receptive Field Network (MRF-Net) for Autonomous Underwater Vehicle Fishing Net Detection Using Forward-Looking Sonar Images.
    Qin R; Zhao X; Zhu W; Yang Q; He B; Li G; Yan T
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33801861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.