BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 30979030)

  • 1. Enhanced Oil Recovery by a Suspension of Core-Shell Polymeric Nanoparticles in Heterogeneous Low-Permeability Oil Reservoirs.
    Long Y; Wang R; Zhu B; Huang X; Leng Z; Chen L; Song F
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30979030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Research on Seepage Law and Migration Characteristics of Core-Shell Polymeric Nanoparticles Dispersion System in Porous Media.
    Huang X; Wang Y; Long Y; Liu J; Zheng H; Nie W; Han H
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Laboratory Experimental Study on Enhancing the Oil Recovery Mechanisms of Polymeric Surfactants.
    Guo J; Wang F; Zhao Y; Wang P; Wang T; Yang J; Yang B; Ma L
    Molecules; 2024 Mar; 29(6):. PubMed ID: 38542957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances of spontaneous emulsification and its important applications in enhanced oil recovery process.
    Li Z; Xu D; Yuan Y; Wu H; Hou J; Kang W; Bai B
    Adv Colloid Interface Sci; 2020 Mar; 277():102119. PubMed ID: 32045722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Investigation of Polymer-Coated Silica Nanoparticles for EOR under Harsh Reservoir Conditions of High Temperature and Salinity.
    Bila A; Torsæter O
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Investigation of Stability of Silica Nanoparticles at Reservoir Conditions for Enhanced Oil-Recovery Applications.
    Li S; Ng YH; Lau HC; Torsæter O; Stubbs LP
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32759669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into Molecular Dynamics and Oil Extraction Behavior of the Polymeric Surfactant in a Multilayered Heterogeneous Reservoir.
    Zheng H; Liu H; Tong K
    ACS Omega; 2024 Mar; 9(10):11243-11254. PubMed ID: 38496924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Conformance Control Patterns and Size of the Slug of In Situ Supercritical CO
    Zhou X; AlOtaibi FM; Kamal MS; Kokal SL
    ACS Omega; 2020 Dec; 5(51):33395-33405. PubMed ID: 33403302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Oil Recovery from Low-Permeability Reservoirs with a Thermoviscosifying Water-Soluble Polymer.
    Zhang X; Li B; Pan F; Su X; Feng Y
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced oil recovery from fractured carbonate reservoirs using nanoparticles with low salinity water and surfactant: A review on experimental and simulation studies.
    Dordzie G; Dejam M
    Adv Colloid Interface Sci; 2021 Jul; 293():102449. PubMed ID: 34034208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Profile Control and Oil Displacement Effect of Starch Gel and Nano-MoS
    Zhang L; Liu Y; Wang Z; Li H; Zhao Y; Pan Y; Liu Y; Yuan W; Hou J
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of 1D Fe₃O₄/P(MBAAm-co-MAA) nanochains as stabilizers for Ag nanoparticles and templates for hollow mesoporous structure, and their applications in catalytic reaction and drug delivery.
    Zhang W; Si X; Liu B; Bian G; Qi Y; Yang X; Li C
    J Colloid Interface Sci; 2015 Oct; 456():145-54. PubMed ID: 26119084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO
    Chen L; Liao X; Tang S; Feng S; Tang R; Jiang S; Dong Y
    ACS Omega; 2022 Feb; 7(7):6271-6279. PubMed ID: 35224389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guar Gum-Based Hydrogels as Potent Green Polymers for Enhanced Oil Recovery in High-Salinity Reservoirs.
    Elsaeed SM; Zaki EG; Omar WAE; Ashraf Soliman A; Attia AM
    ACS Omega; 2021 Sep; 6(36):23421-23431. PubMed ID: 34549141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Study on the Enhanced Oil Recovery Mechanism of an Ordinary Heavy Oil Field by Polymer Flooding.
    Wang F; Xu H; Liu Y; Jiang Y; Wu C
    ACS Omega; 2023 Apr; 8(15):14089-14096. PubMed ID: 37091385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on frequency optimization and mechanism of ultrasonic waves assisting water flooding in low-permeability reservoirs.
    Li X; Pu C; Chen X; Huang F; Zheng H
    Ultrason Sonochem; 2021 Jan; 70():105291. PubMed ID: 32763749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Technique for Enhancing Residual Oil Recovery from Low-Permeability Reservoirs: The Cooperation of Petroleum Hydrocarbon-Degrading Bacteria and SiO
    Cui K; Li H; Chen P; Li Y; Jiang W; Guo K
    Microorganisms; 2022 Oct; 10(11):. PubMed ID: 36363696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evaluation of oil recovery mechanism using a variety of surface-modified silica nanoparticles: Role of in-situ surface-modification in oil-wet system.
    Adil M; Mohd Zaid H; Raza F; Agam MA
    PLoS One; 2020; 15(7):e0236837. PubMed ID: 32730369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility Study of Applying Modified Nano-SiO
    Lai N; Tang L; Jia N; Qiao D; Chen J; Wang Y; Zhao X
    Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31514371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and Performance Evaluation of Self-Cementing Nanoscale Polymeric Microspheres with Salt and Temperature Tolerance.
    Qu G; Li B; Liu Y; Zhang Z; Bo L; Zhi J; Tian X; Bai X; Li X; Lv Q
    Molecules; 2024 May; 29(11):. PubMed ID: 38893472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.