These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 30979116)

  • 1. Biomedical Applications of Biodegradable Polyesters.
    Manavitehrani I; Fathi A; Badr H; Daly S; Negahi Shirazi A; Dehghani F
    Polymers (Basel); 2016 Jan; 8(1):. PubMed ID: 30979116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectively Biodegradable Polyesters: Nature-Inspired Construction Materials for Future Biomedical Applications.
    Urbánek T; Jäger E; Jäger A; Hrubý M
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31248100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and applications of biodegradable polyester tissue scaffolds based on endogenous monomers found in human metabolism.
    Barrett DG; Yousaf MN
    Molecules; 2009 Oct; 14(10):4022-50. PubMed ID: 19924045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing the power of polyol-based polyesters for biomedical innovations: synthesis, properties, and biodegradation.
    Fakhri V; Su CH; Tavakoli Dare M; Bazmi M; Jafari A; Pirouzfar V
    J Mater Chem B; 2023 Oct; 11(40):9597-9629. PubMed ID: 37740402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review on the Impact of Polyols on the Properties of Bio-Based Polyesters.
    Lang K; Sánchez-Leija RJ; Gross RA; Linhardt RJ
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33322728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic biodegradable polyesters for implantable controlled-release devices.
    Pothupitiya JU; Zheng C; Saltzman WM
    Expert Opin Drug Deliv; 2022 Oct; 19(10):1351-1364. PubMed ID: 36197839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthopaedic applications for PLA-PGA biodegradable polymers.
    Athanasiou KA; Agrawal CM; Barber FA; Burkhart SS
    Arthroscopy; 1998 Oct; 14(7):726-37. PubMed ID: 9788368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable polyester shape memory polymers: Recent advances in design, material properties and applications.
    Zhang X; Tan BH; Li Z
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():1061-1074. PubMed ID: 30184729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocrosslinkable polyesters and poly(ester anhydride)s for biomedical applications.
    Seppälä J; Korhonen H; Hakala R; Malin M
    Macromol Biosci; 2011 Dec; 11(12):1647-52. PubMed ID: 22052651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters.
    Li Y; Chu Z; Li X; Ding X; Guo M; Zhao H; Yao J; Wang L; Cai Q; Fan Y
    Regen Biomater; 2017 Jun; 4(3):179-190. PubMed ID: 28596915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Biodegradable Conducting Polymers and Their Biomedical Applications.
    Kenry ; Liu B
    Biomacromolecules; 2018 Jun; 19(6):1783-1803. PubMed ID: 29787260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates.
    Brannigan RP; Dove AP
    Biomater Sci; 2016 Dec; 5(1):9-21. PubMed ID: 27840864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages and applications.
    Yeo JCC; Muiruri JK; Thitsartarn W; Li Z; He C
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():1092-1116. PubMed ID: 30184731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Polyesters in Fused Deposition Modeling for Biomedical Applications.
    Grivet-Brancot A; Boffito M; Ciardelli G
    Macromol Biosci; 2022 Oct; 22(10):e2200039. PubMed ID: 35488769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo biocompatible shape memory polyester derived from recycled polycarbonate e-waste for biomedical application.
    Ghosal K; Pal S; Ghosh D; Jana K; Sarkar K
    Biomater Adv; 2022 Jul; 138():212961. PubMed ID: 35913244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient platform for combinatorial screening of thermoset polymers for biomedical applications.
    Dasgupta Q; Madras G; Chatterjee K
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():766-777. PubMed ID: 30423763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brief review on poly(glycerol sebacate) as an emerging polyester in biomedical application: Structure, properties and modifications.
    Piszko P; Kryszak B; Piszko A; Szustakiewicz K
    Polim Med; 2021; 51(1):43-50. PubMed ID: 34327876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications.
    Kaniuk Ł; Stachewicz U
    ACS Biomater Sci Eng; 2021 Dec; 7(12):5339-5362. PubMed ID: 34649426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microorganisms that produce enzymes active on biodegradable polyesters are ubiquitous.
    Degli-Innocenti F; Breton T; Chinaglia S; Esposito E; Pecchiari M; Pennacchio A; Pischedda A; Tosin M
    Biodegradation; 2023 Dec; 34(6):489-518. PubMed ID: 37354274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials.
    Fukushima K
    Biomater Sci; 2016 Jan; 4(1):9-24. PubMed ID: 26323327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.