BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30979227)

  • 1. Precision Synthesis of Functional Polysaccharide Materials by Phosphorylase-Catalyzed Enzymatic Reactions.
    Kadokawa JI
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and Material Application of Amylose-Polymer Inclusion Complexes by Enzymatic Polymerization Approach.
    Orio S; Yamamoto K; Kadokawa JI
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30966029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Nanostructured Supramolecules through Helical Inclusion of Amylose toward Hydrophobic Polyester Guests, Biomimetically through Vine-Twining Polymerization Process.
    Kadokawa JI
    Biomimetics (Basel); 2023 Nov; 8(7):. PubMed ID: 37999157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic synthesis of functional amylosic materials and amylose analog polysaccharides.
    Kadokawa JI
    Methods Enzymol; 2019; 627():189-213. PubMed ID: 31630740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Architecture of amylose supramolecules in form of inclusion complexes by phosphorylase-catalyzed enzymatic polymerization.
    Kadokawa J
    Biomolecules; 2013 Jul; 3(3):369-85. PubMed ID: 24970172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Difference in Macroscopic Morphologies of Amylosic Supramolecular Networks Depending on Guest Polymers in Vine-Twining Polymerization.
    Orio S; Shoji T; Yamamoto K; Kadokawa JI
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of polysaccharide supramolecular films by vine-twining polymerization approach.
    Kadokawa J; Nomura S; Hatanaka D; Yamamoto K
    Carbohydr Polym; 2013 Oct; 98(1):611-7. PubMed ID: 23987389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vine-twining polymerization: amylose twines around polyethers to form amylose-polyether inclusion complexes.
    Kadokawa J; Kaneko Y; Nagase S; Takahashi T; Tagaya H
    Chemistry; 2002 Aug; 8(15):3321-6. PubMed ID: 12203312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vine-twining polymerization: a new preparation method for well-defined supramolecules composed of amylose and synthetic polymers.
    Kaneko Y; Kadokawa J
    Chem Rec; 2005; 5(1):36-46. PubMed ID: 15806555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of chitin and chitosan stereoisomers by thermostable α-glucan phosphorylase-catalyzed enzymatic polymerization of α-D-glucosamine 1-phosphate.
    Kadokawa J; Shimohigoshi R; Yamashita K; Yamamoto K
    Org Biomol Chem; 2015 Apr; 13(14):4336-43. PubMed ID: 25766841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Amylose-Oligo[(
    Kadokawa JI; Wada Y; Yamamoto K
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33946828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of Supramolecular Soft Materials from Amylosic Inclusion Complexes with Designed Guest Polymers Obtained by Vine-Twining Polymerization.
    Kadokawa JI; Yano K; Orio S; Yamamoto K
    ACS Omega; 2019 Apr; 4(4):6331-6338. PubMed ID: 31459773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vine-Twining Inclusion Behavior of Amylose towards Hydrophobic Polyester, Poly(β-propiolactone), in Glucan Phosphorylase-Catalyzed Enzymatic Polymerization.
    Iwamoto MA; Kadokawa JI
    Life (Basel); 2023 Jan; 13(2):. PubMed ID: 36836651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemoenzymatic syntheses of amylose-grafted chitin and chitosan.
    Kaneko Y; Matsuda S; Kadokawa J
    Biomacromolecules; 2007 Dec; 8(12):3959-64. PubMed ID: 18004812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemoenzymatic synthesis and hydrogelation of amylose-grafted xanthan gums.
    Arimura T; Omagari Y; Yamamoto K; Kadokawa J
    Int J Biol Macromol; 2011 Nov; 49(4):498-503. PubMed ID: 21689681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of enzymatically recyclable hydrogels through the formation of inclusion complexes of amylose in a vine-twining polymerization.
    Kaneko Y; Fujisaki K; Kyutoku T; Furukawa H; Kadokawa J
    Chem Asian J; 2010 Jul; 5(7):1627-33. PubMed ID: 20480493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemoenzymatic Preparation of Amylose-Grafted Chitin Nanofiber Network Materials.
    Kadokawa JI; Egashira N; Yamamoto K
    Biomacromolecules; 2018 Jul; 19(7):3013-3019. PubMed ID: 29874464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Stability of Amylose Inclusion Complexes Depending on Guest Polymers and Their Application to Supramolecular Polymeric Materials.
    Tanaka T; Tsutsui A; Tanaka K; Yamamoto K; Kadokawa JI
    Biomolecules; 2017 Mar; 7(1):. PubMed ID: 28294979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amylose's recognition of chirality in polylactides on formation of inclusion complexes in vine-twining polymerization.
    Kaneko Y; Ueno K; Yui T; Nakahara K; Kadokawa J
    Macromol Biosci; 2011 Oct; 11(10):1407-15. PubMed ID: 21830300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of microparticles from amylose-grafted poly(γ-glutamic acid) networks obtained by thermostable phosphorylase-catalyzed enzymatic polymerization.
    Kadokawa JI; Orio S; Yamamoto K
    RSC Adv; 2019 May; 9(28):16176-16182. PubMed ID: 35521363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.