These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30979229)

  • 1. A Hyper-Viscoelastic Constitutive Model for Polyurea under Uniaxial Compressive Loading.
    Bai Y; Liu C; Huang G; Li W; Feng S
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tensile Mechanical Properties and Dynamic Constitutive Model of Polyurea Elastomer under Different Strain Rates.
    Chen Y; Guo H; Sun M; Lv X
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalization of exponential based hyperelastic to hyper-viscoelastic model for investigation of mechanical behavior of rate dependent materials.
    Narooei K; Arman M
    J Mech Behav Biomed Mater; 2018 Mar; 79():104-113. PubMed ID: 29289929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse Parameter Identification for Hyperelastic Model of a Polyurea.
    Xiao Y; Tang Z; Hong X
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tensile creep mechanical behavior of periodontal ligament: A hyper-viscoelastic constitutive model.
    Zhou J; Song Y; Shi X; Zhang C
    Comput Methods Programs Biomed; 2021 Aug; 207():106224. PubMed ID: 34146838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive model for brain tissue under finite compression.
    Laksari K; Shafieian M; Darvish K
    J Biomech; 2012 Feb; 45(4):642-6. PubMed ID: 22281404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Behavior of Liquid Nitrile Rubber-Modified Epoxy Resin under Static and Dynamic Loadings: Experimental and Constitutive Analysis.
    Xu X; Gao S; Ou Z; Ye H
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30200220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheological characterization of human brain tissue.
    Budday S; Sommer G; Haybaeck J; Steinmann P; Holzapfel GA; Kuhl E
    Acta Biomater; 2017 Sep; 60():315-329. PubMed ID: 28658600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyper-Pseudo-Viscoelastic Model and Parameter Identification for Describing Tensile Recovery Stress-Strain Responses of Rubber Components in TBR.
    Pan G; Chen M; Wang Y; Zhang J; Liu L; Zhang L; Li F
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and numerical investigations on the use of polymer Hopkinson pressure bars.
    Harrigan JJ; Ahonsi B; Palamidi E; Reid SR
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2023):20130201. PubMed ID: 25071237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Hyper-Viscoelastic Continuum-Level Finite Element Model of the Spinal Cord Assessed for Transverse Indentation and Impact Loading.
    Rycman A; McLachlin S; Cronin DS
    Front Bioeng Biotechnol; 2021; 9():693120. PubMed ID: 34458242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Constitutive Model of Ultra-High Molecular Weight Polyethylene (UHMWPE): Considering the Temperature and Strain Rate Effects.
    Zhang K; Li W; Zheng Y; Yao W; Zhao C
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32674487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials.
    Lang L; Song KI; Zhai Y; Lao D; Lee HL
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyper-viscoelastic mechanical behavior of cranial pia mater in tension.
    Li Y; Zhang W; Lu YC; Wu CW
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105108. PubMed ID: 32736277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational modelling of the mechanical behaviour of protein-based hydrogels.
    Pérez-Benito Á; Huerta-López C; Alegre-Cebollada J; García-Aznar JM; Hervas-Raluy S
    J Mech Behav Biomed Mater; 2023 Feb; 138():105661. PubMed ID: 36630754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Strain Rate on the Stress Relaxation of the Pig Dermis: A Hyper-Viscoelastic Approach.
    Dwivedi KK; Lakhani P; Kumar S; Kumar N
    J Biomech Eng; 2020 Sep; 142(9):. PubMed ID: 32005989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of normal compression on the shear modulus of soft tissue in rheological measurements.
    Ayyildiz M; Cinoglu S; Basdogan C
    J Mech Behav Biomed Mater; 2015 Sep; 49():235-43. PubMed ID: 26042768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the Mechanical Properties and Energy Absorbing Capability of Polyurethane Microcellular Elastomers under Different Compressive Strain Rates.
    Zhao Z; Li X; Jiang H; Su X; Zhang X; Zou M
    Polymers (Basel); 2023 Feb; 15(3):. PubMed ID: 36772079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.