These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30979245)

  • 1. Bio-Based Resin Reinforced with Flax Fiber as Thermorheologically Complex Materials.
    Amiri A; Yu A; Webster D; Ulven C
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creep behavior of bagasse fiber reinforced polymer composites.
    Xu Y; Wu Q; Lei Y; Yao F
    Bioresour Technol; 2010 May; 101(9):3280-6. PubMed ID: 20064712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creep Behavior of Poly(lactic acid) Based Biocomposites.
    Morreale M; Mistretta MC; Fiore V
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of fiber-matrix adhesion on the creep behavior of CF/PPS composites: temperature and physical aging characterization.
    Motta Dias MH; Jansen KMB; Luinge JW; Bersee HEN; Benedictus R
    Mech Time Depend Mater; 2016; 20(2):245-262. PubMed ID: 30197569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-Temperature-Plasticization Superposition Principle: Predicting Creep of a Plasticized Epoxy.
    Krauklis AE; Akulichev AG; Gagani AI; Echtermeyer AT
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31717515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Green" composites from renewable resources: preparation of epoxidized soybean oil and flax fiber composites.
    Liu Z; Erhan SZ; Akin DE; Barton FE
    J Agric Food Chem; 2006 Mar; 54(6):2134-7. PubMed ID: 16536587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creep-Induced Screw Preload Loss of Carbon-Fiber Sheet Molding Compound at Elevated Temperature.
    Finck D; Seidel C; Hausmann J; Rief T
    Materials (Basel); 2019 Nov; 12(21):. PubMed ID: 31683917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical Testing and Modeling of the Time-Temperature Superposition Response in Hybrid Fiber Reinforced Composites.
    Koutsomichalis A; Kalampoukas T; Mouzakis DE
    Polymers (Basel); 2021 Apr; 13(7):. PubMed ID: 33917628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of starch films containing starch nanoparticles. Part 2: viscoelasticity and creep properties.
    Shi AM; Wang LJ; Li D; Adhikari B
    Carbohydr Polym; 2013 Jul; 96(2):602-10. PubMed ID: 23768606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical Response of Epoxy Resin-Flax Fiber Composites Subjected to Repeated Loading and Creep Recovery Tests.
    Stochioiu C; Hadăr A; Piezel B
    Polymers (Basel); 2023 Feb; 15(3):. PubMed ID: 36772067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Preliminary Environmental Assessment of Epoxidized Sucrose Soyate (ESS)-Based Biocomposite.
    Ghasemi S; Sibi MP; Ulven CA; Webster DC; Pourhashem G
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32560446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creep and Recovery Behavior of Continuous Fiber-Reinforced 3DP Composites.
    Al Rashid A; Koҫ M
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34069317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Elevated Temperature on the Mechanical Properties of Hybrid Flax-Fiber-Epoxy Composites Incorporating Graphene.
    Oun A; Manalo A; Alajarmeh O; Abousnina R; Gerdes A
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35567010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended creep behavior of dental composites using time-temperature superposition principle.
    Vaidyanathan TK; Vaidyanathan J; Cherian Z
    Dent Mater; 2003 Jan; 19(1):46-53. PubMed ID: 12498896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Approach to Describe the Time-Temperature Conversion among Relaxation Curves of Viscoelastic Materials.
    Álvarez-Vázquez A; Fernández-Canteli A; Castillo E; Pelayo F; Muñiz-Calvente M; Lamela MJ
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32290482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic stability of resin-composites aged in food-simulating solvents.
    Marghalani HY; Watts DC
    Dent Mater; 2013 Sep; 29(9):963-70. PubMed ID: 23910977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creep and visco-elastic recovery of cured and secondary-cured composites and resin-modified glass-ionomers.
    el Hejazi AA; Watts DC
    Dent Mater; 1999 Mar; 15(2):138-43. PubMed ID: 10551105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resorcinol-Derived Vitrimers and Their Flax Fiber-Reinforced Composites Based on Fast Siloxane Exchange.
    Debsharma T; Engelen S; De Baere I; Van Paepegem W; Du Prez F
    Macromol Rapid Commun; 2023 Apr; 44(8):e2300020. PubMed ID: 36840963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Properties of Flax Tape-Reinforced Thermoset Composites.
    Sarkar F; Akonda M; Shah DU
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33271999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creep Behavior of Resin Composite Interface Between Orthodontic Brackets and Enamel.
    Durgesh BH; Alkheraif AA; Musaibah AS; Asiry MA; Varrela J; Vallittu PK
    J Adhes Dent; 2018; 20(5):417-424. PubMed ID: 30349906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.