BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30979308)

  • 1. Engineering Porous Poly(lactic acid) Scaffolds with High Mechanical Performance via a Solid State Extrusion/Porogen Leaching Approach.
    Yin HM; Qian J; Zhang J; Lin ZF; Li JS; Xu JZ; Li ZM
    Polymers (Basel); 2016 May; 8(6):. PubMed ID: 30979308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of super-hydrophilic and highly open-porous poly (lactic acid) scaffolds using supercritical carbon dioxide foaming.
    Ren Q; Zhu X; Li W; Wu M; Cui S; Ling Y; Ma X; Wang G; Wang L; Zheng W
    Int J Biol Macromol; 2022 Apr; 205():740-748. PubMed ID: 35331790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA-only scaffolds.
    Bhaskar B; Owen R; Bahmaee H; Wally Z; Sreenivasa Rao P; Reilly GC
    J Biomed Mater Res A; 2018 May; 106(5):1334-1340. PubMed ID: 29316238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds.
    Fisher JP; Holland TA; Dean D; Engel PS; Mikos AG
    J Biomater Sci Polym Ed; 2001; 12(6):673-87. PubMed ID: 11556743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology and compression behaviour of biodegradable scaffolds produced by the sintering process.
    Ghassemieh E
    Proc Inst Mech Eng H; 2008 Nov; 222(8):1247-62. PubMed ID: 19143418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of three-layered porous PLA/PEG scaffold: relationship between morphology, mechanical behavior and cell permeability.
    Scaffaro R; Lopresti F; Botta L; Rigogliuso S; Ghersi G
    J Mech Behav Biomed Mater; 2016 Feb; 54():8-20. PubMed ID: 26410761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of cryomilling times on the resultant properties of porous biodegradable poly(e-caprolactone)/poly(glycolic acid) scaffolds for articular cartilage tissue engineering.
    Jonnalagadda JB; Rivero IV
    J Mech Behav Biomed Mater; 2014 Dec; 40():33-41. PubMed ID: 25194523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The double porogen approach as a new technique for the fabrication of interconnected poly(L-lactic acid) and starch based biodegradable scaffolds.
    Ghosh S; Viana JC; Reis RL; Mano JF
    J Mater Sci Mater Med; 2007 Feb; 18(2):185-93. PubMed ID: 17323149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of interconnected porous biodegradable poly(ε-caprolactone) load bearing scaffolds.
    Allaf RM; Rivero IV
    J Mater Sci Mater Med; 2011 Aug; 22(8):1843-53. PubMed ID: 21670998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly epsilon-caprolactone-based composite scaffolds.
    Guarino V; Ambrosio L
    Acta Biomater; 2008 Nov; 4(6):1778-87. PubMed ID: 18571487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous poly(ε-caprolactone) scaffolds for load-bearing tissue regeneration: solventless fabrication and characterization.
    Allaf RM; Rivero IV; Abidi N; Ivanov IN
    J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):1050-60. PubMed ID: 23559444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering.
    Shi X; Sitharaman B; Pham QP; Liang F; Wu K; Edward Billups W; Wilson LJ; Mikos AG
    Biomaterials; 2007 Oct; 28(28):4078-90. PubMed ID: 17576009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of porosity and pore size on microstructures and mechanical properties of poly-epsilon-caprolactone- hydroxyapatite composites.
    Yu H; Matthew HW; Wooley PH; Yang SY
    J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):541-7. PubMed ID: 18335434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of porogen morphology on the architecture, permeability, and mechanical properties of hydroxyapatite whisker reinforced polyetheretherketone scaffolds.
    Conrad TL; Roeder RK
    J Mech Behav Biomed Mater; 2020 Jun; 106():103730. PubMed ID: 32250948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state cryomilling for porogen mixing and porous scaffold fabrication - biomed 2011.
    Allaf RM; Rivero IV
    Biomed Sci Instrum; 2011; 47():258-63. PubMed ID: 21525630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined Porogen Leaching and Emulsion Templating to produce Bone Tissue Engineering Scaffolds.
    Owen R; Sherborne C; Evans R; Reilly GC; Claeyssens F
    Int J Bioprint; 2020; 6(2):265. PubMed ID: 32782992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of hydrophilic poly(lactic acid) tissue engineering scaffold via (PLA)-(PLA-b-PEG)-(PEG) solution casting and thermal-induced surface structural transformation.
    Zhu X; Zhong T; Huang R; Wan A
    J Biomater Sci Polym Ed; 2015; 26(17):1286-96. PubMed ID: 26324121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological effects of porous poly-d,l-lactic acid/hydroxyapatite scaffolds produced by supercritical CO2 foaming on their mechanical performance.
    Rouholamin D; van Grunsven W; Reilly GC; Smith PJ
    Proc Inst Mech Eng H; 2016 Aug; 230(8):761-74. PubMed ID: 27226064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.