BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30979337)

  • 41. A novel strategy for production of ethanol and recovery of xylose from simulated corncob hydrolysate.
    Sun J; Wang J; Tian K; Dong Z; Liu X; Permaul K; Singh S; Prior BA; Wang Z
    Biotechnol Lett; 2018 May; 40(5):781-788. PubMed ID: 29564679
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Factors contributing to the loss of ethanologenicity of Escherichia coli B recombinants pL0I297 and KO11.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1996; 57-58():293-305. PubMed ID: 8669902
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioconversion of distillers' grains hydrolysates to advanced biofuels by an Escherichia coli co-culture.
    Liu F; Wu W; Tran-Gyamfi MB; Jaryenneh JD; Zhuang X; Davis RW
    Microb Cell Fact; 2017 Nov; 16(1):192. PubMed ID: 29121935
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Partial deletion of rng (RNase G)-enhanced homoethanol fermentation of xylose by the non-transgenic Escherichia coli RM10.
    Manow R; Wang J; Wang Y; Zhao J; Garza E; Iverson A; Finan C; Grayburn S; Zhou S
    J Ind Microbiol Biotechnol; 2012 Jul; 39(7):977-85. PubMed ID: 22374228
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancement of xylose utilization from corn stover by a recombinant Escherichia coli strain for ethanol production.
    Saha BC; Qureshi N; Kennedy GJ; Cotta MA
    Bioresour Technol; 2015 Aug; 190():182-8. PubMed ID: 25958140
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evolutionary engineered Candida intermedia exhibits improved xylose utilization and robustness to lignocellulose-derived inhibitors and ethanol.
    Moreno AD; Carbone A; Pavone R; Olsson L; Geijer C
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1405-1416. PubMed ID: 30498977
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative energetics of glucose and xylose metabolism in ethanologenic recombinant Escherichia coli B.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1995; 51-52():179-95. PubMed ID: 7668846
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adaptive evolution of nontransgenic Escherichia coli KC01 for improved ethanol tolerance and homoethanol fermentation from xylose.
    Wang Y; Manow R; Finan C; Wang J; Garza E; Zhou S
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1371-7. PubMed ID: 21188614
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigating the strategies for microbial production of trehalose from lignocellulosic sugars.
    Wu Y; Wang J; Shen X; Wang J; Chen Z; Sun X; Yuan Q; Yan Y
    Biotechnol Bioeng; 2018 Mar; 115(3):785-790. PubMed ID: 29197181
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New insights into transport capability of sugars and its impact on growth from novel mutants of Escherichia coli.
    Alva A; Sabido-Ramos A; Escalante A; BolĂ­var F
    Appl Microbiol Biotechnol; 2020 Feb; 104(4):1463-1479. PubMed ID: 31900563
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect.
    Lu H; Zhao X; Wang Y; Ding X; Wang J; Garza E; Manow R; Iverson A; Zhou S
    BMC Biotechnol; 2016 Feb; 16():19. PubMed ID: 26895857
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate.
    Fujiwara R; Noda S; Tanaka T; Kondo A
    Nat Commun; 2020 Jan; 11(1):279. PubMed ID: 31937786
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation.
    RomanĂ­ A; Pereira F; Johansson B; Domingues L
    Bioresour Technol; 2015 Mar; 179():150-158. PubMed ID: 25536512
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fermentation of biomass-derived glucuronic acid by pet expressing recombinants of E. coli B.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1997; 63-65():221-41. PubMed ID: 9170247
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: arabinose, lactose, and xylose.
    Ammar EM; Wang X; Rao CV
    Sci Rep; 2018 Jan; 8(1):609. PubMed ID: 29330542
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CRISPR/Cas9-mediated engineering of Escherichia coli for n-butanol production from xylose in defined medium.
    Abdelaal AS; Jawed K; Yazdani SS
    J Ind Microbiol Biotechnol; 2019 Jul; 46(7):965-975. PubMed ID: 30982114
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ethanol production from glucose and xylose by immobilized Zymomonas mobilis CP4(pZB5).
    Krishnan MS; Blanco M; Shattuck CK; Nghiem NP; Davison BH
    Appl Biochem Biotechnol; 2000; 84-86():525-41. PubMed ID: 10849817
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis.
    Yanase H; Miyawaki H; Sakurai M; Kawakami A; Matsumoto M; Haga K; Kojima M; Okamoto K
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1667-78. PubMed ID: 22573268
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of acetic acid on xylose conversion to ethanol by genetically engineered E. coli.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1992; 34-35():185-204. PubMed ID: 1622203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.