These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30979351)

  • 1. Improving the Antinoise Ability of DNNs via a Bio-Inspired Noise Adaptive Activation Function Rand Softplus.
    Chen Y; Mai Y; Xiao J; Zhang L
    Neural Comput; 2019 Jun; 31(6):1215-1233. PubMed ID: 30979351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust and energy-efficient expression recognition based on improved deep ResNets.
    Chen Y; Du J; Liu Q; Zhang L; Zeng Y
    Biomed Tech (Berl); 2019 Sep; 64(5):519-528. PubMed ID: 30807287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parametric Deformable Exponential Linear Units for deep neural networks.
    Cheng Q; Li H; Wu Q; Ma L; Ngan KN
    Neural Netw; 2020 May; 125():281-289. PubMed ID: 32151915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Causal importance of low-level feature selectivity for generalization in image recognition.
    Ukita J
    Neural Netw; 2020 May; 125():185-193. PubMed ID: 32145648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved object recognition using neural networks trained to mimic the brain's statistical properties.
    Federer C; Xu H; Fyshe A; Zylberberg J
    Neural Netw; 2020 Nov; 131():103-114. PubMed ID: 32771841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear leaky-integrate-and-fire neuron model based spiking neural networks and its mapping relationship to deep neural networks.
    Lu S; Xu F
    Front Neurosci; 2022; 16():857513. PubMed ID: 36090262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise-trained deep neural networks effectively predict human vision and its neural responses to challenging images.
    Jang H; McCormack D; Tong F
    PLoS Biol; 2021 Dec; 19(12):e3001418. PubMed ID: 34882676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Categorization of birth weight phenotypes for inclusion in genetic evaluations using a deep neural network.
    Ribeiro A; Golden BL; Spangler ML
    J Anim Sci; 2021 Mar; 99(3):. PubMed ID: 33599698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPLASH: Learnable activation functions for improving accuracy and adversarial robustness.
    Tavakoli M; Agostinelli F; Baldi P
    Neural Netw; 2021 Aug; 140():1-12. PubMed ID: 33743319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast Convergent Antinoise Dual Neural Network Controller With Adaptive Gain for Flexible Endoscope Robots.
    Cui Z; Li J; Li W; Zhang X; Chiu PWY; Li Z
    IEEE Trans Neural Netw Learn Syst; 2024 Jul; 35(7):9095-9108. PubMed ID: 36383583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks.
    Jang H; Plis SM; Calhoun VD; Lee JH
    Neuroimage; 2017 Jan; 145(Pt B):314-328. PubMed ID: 27079534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tree-CNN: A hierarchical Deep Convolutional Neural Network for incremental learning.
    Roy D; Panda P; Roy K
    Neural Netw; 2020 Jan; 121():148-160. PubMed ID: 31563011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symbolic Deep Networks: A Psychologically Inspired Lightweight and Efficient Approach to Deep Learning.
    Veksler VD; Hoffman BE; Buchler N
    Top Cogn Sci; 2022 Oct; 14(4):702-717. PubMed ID: 34609080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantization Friendly MobileNet (QF-MobileNet) Architecture for Vision Based Applications on Embedded Platforms.
    Kulkarni U; S M M; Gurlahosur SV; Bhogar G
    Neural Netw; 2021 Apr; 136():28-39. PubMed ID: 33429131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual interaction networks: A novel bio-inspired computational model for image classification.
    Wei B; He H; Hao K; Gao L; Tang XS
    Neural Netw; 2020 Oct; 130():100-110. PubMed ID: 32652433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of Microchannels and Application of Basic Activation Functions of Deep Neural Network for Accuracy Analysis of Microfluidic Parameter Data.
    Ahmed F; Shimizu M; Wang J; Sakai K; Kiwa T
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. When Not to Classify: Anomaly Detection of Attacks (ADA) on DNN Classifiers at Test Time.
    Miller D; Wang Y; Kesidis G
    Neural Comput; 2019 Aug; 31(8):1624-1670. PubMed ID: 31260390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting lung mass density of patients with interstitial lung disease and healthy subjects using deep neural network and lung ultrasound surface wave elastography.
    Zhou B; Bartholmai BJ; Kalra S; Zhang X
    J Mech Behav Biomed Mater; 2020 Apr; 104():103682. PubMed ID: 32174432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving robustness of a deep learning-based lung-nodule classification model of CT images with respect to image noise.
    Gao Y; Xiong J; Shen C; Jia X
    Phys Med Biol; 2021 Dec; 66(24):. PubMed ID: 34818638
    [No Abstract]   [Full Text] [Related]  

  • 20. A Discrete-Time Projection Neural Network for Sparse Signal Reconstruction With Application to Face Recognition.
    Xu B; Liu Q; Huang T
    IEEE Trans Neural Netw Learn Syst; 2019 Jan; 30(1):151-162. PubMed ID: 29994338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.