These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30980245)

  • 1. Speciation and accumulation of Zn in sweetcorn kernels for genetic and agronomic biofortification programs.
    Cheah ZX; Kopittke PM; Harper SM; Meyer G; O'Hare TJ; Bell MJ
    Planta; 2019 Jul; 250(1):219-227. PubMed ID: 30980245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Zn accumulation and speciation in kernels of sweetcorn and maize differing in maturity.
    Cheah ZX; Kopittke PM; Scheckel KG; Noerpel MR; Bell MJ
    Ann Bot; 2020 Jan; 125(1):185-193. PubMed ID: 31678993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ analyses of inorganic nutrient distribution in sweetcorn and maize kernels using synchrotron-based X-ray fluorescence microscopy.
    Cheah ZX; Kopittke PM; Harper SM; O'Hare TJ; Wang P; Paterson DJ; de Jonge MD; Bell MJ
    Ann Bot; 2019 Feb; 123(3):543-556. PubMed ID: 30357312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in zinc concentration of sweetcorn kernels reflects source-sink dynamics influenced by kernel number.
    Cheah ZX; O'Hare TJ; Harper SM; Bell MJ
    J Exp Bot; 2020 Aug; 71(16):4985-4992. PubMed ID: 32442251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing bread wheat genotypes of Pakistani origin for grain zinc biofortification potential.
    Rehman A; Farooq M; Nawaz A; Al-Sadi AM; Al-Hashmi KS; Nadeem F; Ullah A
    J Sci Food Agric; 2018 Oct; 98(13):4824-4836. PubMed ID: 29542137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc absorption from low phytic acid genotypes of maize (Zea mays L.), Barley (Hordeum vulgare L.), and Rice (Oryza sativa L.) assessed in a suckling rat pup model.
    Lönnerdal B; Mendoza C; Brown KH; Rutger JN; Raboy V
    J Agric Food Chem; 2011 May; 59(9):4755-62. PubMed ID: 21417220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic biofortification of wheat with zinc: Opportunities to fine-tune zinc uptake, transport and grain loading.
    Kamaral C; Neate SM; Gunasinghe N; Milham PJ; Paterson DJ; Kopittke PM; Seneweera S
    Physiol Plant; 2022 Jan; 174(1):e13612. PubMed ID: 34970752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genome-wide association study identifies a transporter for zinc uploading to maize kernels.
    Chao ZF; Chen YY; Ji C; Wang YL; Huang X; Zhang CY; Yang J; Song T; Wu JC; Guo LX; Liu CB; Han ML; Wu YR; Yan J; Chao DY
    EMBO Rep; 2023 Jan; 24(1):e55542. PubMed ID: 36394374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling and Quantification of Anthocyanins in Purple-Pericarp Sweetcorn and Purple-Pericarp Maize.
    Anirban A; Hong HT; O'Hare TJ
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm.
    Johnson AA; Kyriacou B; Callahan DL; Carruthers L; Stangoulis J; Lombi E; Tester M
    PLoS One; 2011; 6(9):e24476. PubMed ID: 21915334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selecting High Zinc Wheat Cultivars Increases Grain Zinc Bioavailability.
    Guo Z; Zhang X; Wang L; Wang X; Wang R; Hui X; Wang S; Wang Z; Shi M
    J Agric Food Chem; 2021 Sep; 69(38):11196-11203. PubMed ID: 34528796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc biofortification of cereals-role of phosphorus and other impediments in alkaline calcareous soils.
    Akhtar M; Yousaf S; Sarwar N; Hussain S
    Environ Geochem Health; 2019 Oct; 41(5):2365-2379. PubMed ID: 30903431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofortification and bioavailability of rice grain zinc as affected by different forms of foliar zinc fertilization.
    Wei Y; Shohag MJ; Yang X
    PLoS One; 2012; 7(9):e45428. PubMed ID: 23029003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving zinc accumulation in cereal endosperm using HvMTP1, a transition metal transporter.
    Menguer PK; Vincent T; Miller AJ; Brown JKM; Vincze E; Borg S; Holm PB; Sanders D; Podar D
    Plant Biotechnol J; 2018 Jan; 16(1):63-71. PubMed ID: 28436146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Zinc and Iron Accumulation in Maize Grains Using the Zinc and Iron Transporter ZmZIP5.
    Li S; Liu X; Zhou X; Li Y; Yang W; Chen R
    Plant Cell Physiol; 2019 Sep; 60(9):2077-2085. PubMed ID: 31165152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron, zinc, and protein bioavailability proxy measures of meals prepared with nutritionally enhanced beans and maize.
    Pachón H; Ortiz DA; Araujo C; Blair MW; Restrepo J
    J Food Sci; 2009 Jun; 74(5):H147-54. PubMed ID: 19646048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status.
    Persson DP; de Bang TC; Pedas PR; Kutman UB; Cakmak I; Andersen B; Finnie C; Schjoerring JK; Husted S
    New Phytol; 2016 Sep; 211(4):1255-65. PubMed ID: 27159614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal accumulation and characteristics of starch in developing maize caryopses.
    Zhao L; Xu A; Zhang L; Yin Z; Wei C
    Plant Physiol Biochem; 2018 Sep; 130():493-500. PubMed ID: 30086516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maize opaque mutants are no longer so opaque.
    Zhang S; Zhan J; Yadegari R
    Plant Reprod; 2018 Sep; 31(3):319-326. PubMed ID: 29978299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fortification and bioavailability of zinc in potato.
    Vergara Carmona VM; Cecílio Filho AB; Almeida HJ; Gratão PL
    J Sci Food Agric; 2019 May; 99(7):3525-3529. PubMed ID: 30620077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.