BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30980289)

  • 1. Anti-diabetic Properties of Calcium Channel Blockers: Inhibition Effects on Aldose Reductase Enzyme Activity.
    Türkeş C; Demir Y; Beydemir Ş
    Appl Biochem Biotechnol; 2019 Sep; 189(1):318-329. PubMed ID: 30980289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition effects of quinones on aldose reductase: Antidiabetic properties.
    Demir Y; Özaslan MS; Duran HE; Küfrevioğlu Öİ; Beydemir Ş
    Environ Toxicol Pharmacol; 2019 Aug; 70():103195. PubMed ID: 31125830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α-amylase, aldose reductase, and α-glycosidase.
    Demir Y; Durmaz L; Taslimi P; Gulçin İ
    Biotechnol Appl Biochem; 2019 Sep; 66(5):781-786. PubMed ID: 31135076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of calcium channel blockers on paraoxonase-1 (PON1) activity and oxidative stress.
    Türkeş C; Söyüt H; Beydemir S
    Pharmacol Rep; 2014 Feb; 66(1):74-80. PubMed ID: 24905310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney.
    Demir Y; Işık M; Gülçin İ; Beydemir Ş
    J Biochem Mol Toxicol; 2017 Sep; 31(9):. PubMed ID: 28557170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some sulfonamides as aldose reductase inhibitors: therapeutic approach in diabetes.
    Demir Y; Köksal Z
    Arch Physiol Biochem; 2022 Aug; 128(4):979-984. PubMed ID: 32202954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the inhibition profiles of pyrazolyl-thiazole derivatives against aldose reductase and α-glycosidase and molecular docking studies.
    Demir Y; Taslimi P; Koçyiğit ÜM; Akkuş M; Özaslan MS; Duran HE; Budak Y; Tüzün B; Gürdere MB; Ceylan M; Taysi S; Gülçin İ; Beydemir Ş
    Arch Pharm (Weinheim); 2020 Dec; 353(12):e2000118. PubMed ID: 32761859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo inhibition of aldose reductase and advanced glycation end products by phloretin, epigallocatechin 3-gallate and [6]-gingerol.
    Sampath C; Sang S; Ahmedna M
    Biomed Pharmacother; 2016 Dec; 84():502-513. PubMed ID: 27685794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antidiabetic potential: In vitro inhibition effects of bromophenol and diarylmethanones derivatives on metabolic enzymes.
    Demir Y; Taslimi P; Ozaslan MS; Oztaskin N; Çetinkaya Y; Gulçin İ; Beydemir Ş; Goksu S
    Arch Pharm (Weinheim); 2018 Dec; 351(12):e1800263. PubMed ID: 30478943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interactions of cephalosporins on polyol pathway enzymes from sheep kidney.
    Şengül B; Beydemir Ş
    Arch Physiol Biochem; 2018 Feb; 124(1):35-44. PubMed ID: 28758816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition behaviours of some phenolic acids on rat kidney aldose reductase enzyme: an in vitro study.
    Alim Z; Kilinç N; Şengül B; Beydemir Ş
    J Enzyme Inhib Med Chem; 2017 Dec; 32(1):277-284. PubMed ID: 28111996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds.
    Sever B; Altıntop MD; Demir Y; Akalın Çiftçi G; Beydemir Ş; Özdemir A
    Bioorg Chem; 2020 Sep; 102():104110. PubMed ID: 32739480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residues affecting the catalysis and inhibition of rat lens aldose reductase.
    Carper DA; Hohman TC; Old SE
    Biochim Biophys Acta; 1995 Jan; 1246(1):67-73. PubMed ID: 7811733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diarylmethanon, bromophenol and diarylmethane compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia.
    Taslimi P; Aslan HE; Demir Y; Oztaskin N; Maraş A; Gulçin İ; Beydemir S; Goksu S
    Int J Biol Macromol; 2018 Nov; 119():857-863. PubMed ID: 30077669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro aldose reductase inhibitory activity of some flavonyl-2,4-thiazolidinediones.
    Daş-Evcimen N; Bozdağ-Dündar O; Sarikaya M; Ertan R
    J Enzyme Inhib Med Chem; 2008 Jun; 23(3):297-301. PubMed ID: 18569331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Influence of Some Nonsteroidal Anti-inflammatory Drugs on Metabolic Enzymes of Aldose Reductase, Sorbitol Dehydrogenase, and α-Glycosidase: a Perspective for Metabolic Disorders.
    Demir Y; Duran HE; Durmaz L; Taslimi P; Beydemir Ş; Gulçin İ
    Appl Biochem Biotechnol; 2020 Feb; 190(2):437-447. PubMed ID: 31378842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and molecular docking studies of an anti-diabetic complication inhibitor fucosterol from edible brown algae Eisenia bicyclis and Ecklonia stolonifera.
    Jung HA; Islam MN; Lee CM; Oh SH; Lee S; Jung JH; Choi JS
    Chem Biol Interact; 2013 Oct; 206(1):55-62. PubMed ID: 23994501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of aldose reductase by Aegle marmelos and its protective role in diabetic cataract.
    Sankeshi V; Kumar PA; Naik RR; Sridhar G; Kumar MP; Gopal VV; Raju TN
    J Ethnopharmacol; 2013 Aug; 149(1):215-21. PubMed ID: 23827758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorbinil, an Aldose Reductase Inhibitor, in Fighting Against Diabetic Complications.
    Huang Q; Liu Q; Ouyang D
    Med Chem; 2019; 15(1):3-7. PubMed ID: 29792152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rat kidney aldose reductase and aldehyde reductase and polyol production in rat kidney.
    Sato S
    Am J Physiol; 1992 Nov; 263(5 Pt 2):F799-805. PubMed ID: 1443170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.