BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30980353)

  • 1. Anionic Lipid Clustering Model.
    Epand RM
    Adv Exp Med Biol; 2019; 1117():65-71. PubMed ID: 30980353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid complexes with cationic peptides and OAKs; their role in antimicrobial action and in the delivery of antimicrobial agents.
    Epand RF; Mor A; Epand RM
    Cell Mol Life Sci; 2011 Jul; 68(13):2177-88. PubMed ID: 21573783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the "charge cluster mechanism" in amphipathic helical cationic antimicrobial peptides.
    Epand RF; Maloy WL; Ramamoorthy A; Epand RM
    Biochemistry; 2010 May; 49(19):4076-84. PubMed ID: 20387900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial membrane lipids in the action of antimicrobial agents.
    Epand RM; Epand RF
    J Pept Sci; 2011 May; 17(5):298-305. PubMed ID: 21480436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The efficacy of trivalent cyclic hexapeptides to induce lipid clustering in PG/PE membranes correlates with their antimicrobial activity.
    Finger S; Kerth A; Dathe M; Blume A
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2998-3006. PubMed ID: 26367060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane-active peptides and the clustering of anionic lipids.
    Wadhwani P; Epand RF; Heidenreich N; Bürck J; Ulrich AS; Epand RM
    Biophys J; 2012 Jul; 103(2):265-74. PubMed ID: 22853904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of membrane targeting antibiotics.
    Epand RM; Walker C; Epand RF; Magarvey NA
    Biochim Biophys Acta; 2016 May; 1858(5):980-7. PubMed ID: 26514603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies.
    Manzini MC; Perez KR; Riske KA; Bozelli JC; Santos TL; da Silva MA; Saraiva GK; Politi MJ; Valente AP; Almeida FC; Chaimovich H; Rodrigues MA; Bemquerer MP; Schreier S; Cuccovia IM
    Biochim Biophys Acta; 2014 Jul; 1838(7):1985-99. PubMed ID: 24743023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arginine-Containing Surfactant-Like Peptides: Interaction with Lipid Membranes and Antimicrobial Activity.
    Castelletto V; Barnes RH; Karatzas KA; Edwards-Gayle CJC; Greco F; Hamley IW; Rambo R; Seitsonen J; Ruokolainen J
    Biomacromolecules; 2018 Jul; 19(7):2782-2794. PubMed ID: 29738229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides.
    Mitchell NJ; Seaton P; Pokorny A
    Biochim Biophys Acta; 2016 May; 1858(5):988-94. PubMed ID: 26514602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid domains in bacterial membranes and the action of antimicrobial agents.
    Epand RM; Epand RF
    Biochim Biophys Acta; 2009 Jan; 1788(1):289-94. PubMed ID: 18822270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphipathic helical cationic antimicrobial peptides promote rapid formation of crystalline states in the presence of phosphatidylglycerol: lipid clustering in anionic membranes.
    Epand RF; Maloy L; Ramamoorthy A; Epand RM
    Biophys J; 2010 Jun; 98(11):2564-73. PubMed ID: 20513400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward building a physical model for membrane selectivity of antimicrobial peptides: making a quantitative sense of the selectivity.
    Nourbakhsh S; Taheri-Araghi S; Ha BY
    Soft Matter; 2019 Sep; 15(37):7509-7526. PubMed ID: 31528961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid composition regulates the conformation and insertion of the antimicrobial peptide maculatin 1.1.
    Sani MA; Whitwell TC; Separovic F
    Biochim Biophys Acta; 2012 Feb; 1818(2):205-11. PubMed ID: 21801711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological activity and structural aspects of PGLa interaction with membrane mimetic systems.
    Lohner K; Prossnigg F
    Biochim Biophys Acta; 2009 Aug; 1788(8):1656-66. PubMed ID: 19481533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.
    Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M
    Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of the antimicrobial beta-peptide beta-17 with phospholipid vesicles differ from membrane interactions of magainins.
    Epand RF; Umezawa N; Porter EA; Gellman SH; Epand RM
    Eur J Biochem; 2003 Mar; 270(6):1240-8. PubMed ID: 12631282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying the selectivity of antimicrobial peptides to cell membranes by sum frequency generation spectroscopy.
    Golbek TW; Franz J; Elliott Fowler J; Schilke KF; Weidner T; Baio JE
    Biointerphases; 2017 May; 12(2):02D406. PubMed ID: 28476090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants.
    Cheng JT; Hale JD; Elliott M; Hancock RE; Straus SK
    Biochim Biophys Acta; 2011 Mar; 1808(3):622-33. PubMed ID: 21144817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.