BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30980662)

  • 1. Within-Host Adaptation Mediated by Intergenic Evolution in Pseudomonas aeruginosa.
    Khademi SMH; Sazinas P; Jelsbak L
    Genome Biol Evol; 2019 May; 11(5):1385-1397. PubMed ID: 30980662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis.
    Marvig RL; Sommer LM; Molin S; Johansen HK
    Nat Genet; 2015 Jan; 47(1):57-64. PubMed ID: 25401299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Genomic Basis of Rapid Adaptation to Antibiotic Combination Therapy in Pseudomonas aeruginosa.
    Barbosa C; Mahrt N; Bunk J; Graßer M; Rosenstiel P; Jansen G; Schulenburg H
    Mol Biol Evol; 2021 Jan; 38(2):449-464. PubMed ID: 32931584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intergenic evolution during host adaptation increases expression of the metallophore pseudopaline in Pseudomonas aeruginosa.
    Hermansen GMM; Hansen ML; Khademi SMH; Jelsbak L
    Microbiology (Reading); 2018 Aug; 164(8):1038-1047. PubMed ID: 29969091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary Transition from Pathogenicity to Commensalism: Global Regulator Mutations Mediate Fitness Gains through Virulence Attenuation.
    Jansen G; Crummenerl LL; Gilbert F; Mohr T; Pfefferkorn R; Thänert R; Rosenstiel P; Schulenburg H
    Mol Biol Evol; 2015 Nov; 32(11):2883-96. PubMed ID: 26199376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergent Within-Host Adaptation of Pseudomonas aeruginosa through the Transcriptional Regulatory Network.
    Gatt YE; Savion D; Bamberger T; Margalit H
    mSystems; 2023 Apr; 8(2):e0002423. PubMed ID: 36975785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Sweeps and Parallel Pathoadaptation Drive Pseudomonas aeruginosa Evolution in the Cystic Fibrosis Lung.
    Diaz Caballero J; Clark ST; Coburn B; Zhang Y; Wang PW; Donaldson SL; Tullis DE; Yau YC; Waters VJ; Hwang DM; Guttman DS
    mBio; 2015 Sep; 6(5):e00981-15. PubMed ID: 26330513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudomonas aeruginosa adaptation to human hosts.
    Snitkin ES; Segre JA
    Nat Genet; 2015 Jan; 47(1):2-3. PubMed ID: 25547595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergent Metabolic Specialization through Distinct Evolutionary Paths in Pseudomonas aeruginosa.
    La Rosa R; Johansen HK; Molin S
    mBio; 2018 Apr; 9(2):. PubMed ID: 29636437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibiotic Resistance Evolution Is Contingent on the Quorum-Sensing Response in Pseudomonas aeruginosa.
    Hernando-Amado S; Sanz-García F; Martínez JL
    Mol Biol Evol; 2019 Oct; 36(10):2238-2251. PubMed ID: 31228244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa.
    Qi Q; Toll-Riera M; Heilbron K; Preston GM; MacLean RC
    Proc Biol Sci; 2016 Jan; 283(1822):. PubMed ID: 26763710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome analysis of a transmissible lineage of pseudomonas aeruginosa reveals pathoadaptive mutations and distinct evolutionary paths of hypermutators.
    Marvig RL; Johansen HK; Molin S; Jelsbak L
    PLoS Genet; 2013; 9(9):e1003741. PubMed ID: 24039595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution.
    Botelho J; Grosso F; Peixe L
    Drug Resist Updat; 2019 May; 44():100640. PubMed ID: 31492517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative Evolutionary Paths to Bacterial Antibiotic Resistance Cause Distinct Collateral Effects.
    Barbosa C; Trebosc V; Kemmer C; Rosenstiel P; Beardmore R; Schulenburg H; Jansen G
    Mol Biol Evol; 2017 Sep; 34(9):2229-2244. PubMed ID: 28541480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rapid
    Wang K; Chen YQ; Salido MM; Kohli GS; Kong JL; Liang HJ; Yao ZT; Xie YT; Wu HY; Cai SQ; Drautz-Moses DI; Darling AE; Schuster SC; Yang L; Ding Y
    Open Biol; 2017 Sep; 7(9):. PubMed ID: 28878043
    [No Abstract]   [Full Text] [Related]  

  • 16. Integration host factor and sequences downstream of the Pseudomonas aeruginosa algD transcription start site are required for expression.
    Wozniak DJ
    J Bacteriol; 1994 Aug; 176(16):5068-76. PubMed ID: 8051019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions.
    Jochumsen N; Marvig RL; Damkiær S; Jensen RL; Paulander W; Molin S; Jelsbak L; Folkesson A
    Nat Commun; 2016 Oct; 7():13002. PubMed ID: 27694971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Within-host microevolution of Pseudomonas aeruginosa in Italian cystic fibrosis patients.
    Marvig RL; Dolce D; Sommer LM; Petersen B; Ciofu O; Campana S; Molin S; Taccetti G; Johansen HK
    BMC Microbiol; 2015 Oct; 15():218. PubMed ID: 26482905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary reversals of antibiotic resistance in experimental populations of Pseudomonas aeruginosa.
    Gifford DR; MacLean RC
    Evolution; 2013 Oct; 67(10):2973-81. PubMed ID: 24094347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CysB Negatively Affects the Transcription of pqsR and Pseudomonas Quinolone Signal Production in Pseudomonas aeruginosa.
    Farrow JM; Hudson LL; Wells G; Coleman JP; Pesci EC
    J Bacteriol; 2015 Jun; 197(12):1988-2002. PubMed ID: 25845844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.