These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30980779)

  • 1. Spatiotemporal prediction of wildfire size extremes with Bayesian finite sample maxima.
    Joseph MB; Rossi MW; Mietkiewicz NP; Mahood AL; Cattau ME; St Denis LA; Nagy RC; Iglesias V; Abatzoglou JT; Balch JK
    Ecol Appl; 2019 Sep; 29(6):e01898. PubMed ID: 30980779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of regional wildfire activity in the probabilistic Bayesian framework of Firelihood.
    Pimont F; Fargeon H; Opitz T; Ruffault J; Barbero R; Martin-StPaul N; Rigolot E; RiviÉre M; Dupuy JL
    Ecol Appl; 2021 Jul; 31(5):e02316. PubMed ID: 33636026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region.
    Harvey BJ; Donato DC; Turner MG
    Ecology; 2016 Sep; 97(9):2272-2282. PubMed ID: 27859087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fuel reduction burning reduces wildfire severity during extreme fire events in south-eastern Australia.
    Collins L; Trouvé R; Baker PJ; Cirulus B; Nitschke CR; Nolan RH; Smith L; Penman TD
    J Environ Manage; 2023 Oct; 343():118171. PubMed ID: 37245307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic prediction of global monthly burned area with hybrid deep neural networks.
    Zhang G; Wang M; Liu K
    Ecol Appl; 2022 Jul; 32(5):e2610. PubMed ID: 35366041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drivers and implications of the extreme 2022 wildfire season in Southwest Europe.
    Rodrigues M; Cunill Camprubí À; Balaguer-Romano R; Coco Megía CJ; Castañares F; Ruffault J; Fernandes PM; Resco de Dios V
    Sci Total Environ; 2023 Feb; 859(Pt 2):160320. PubMed ID: 36410479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fuel treatment effectiveness in the context of landform, vegetation, and large, wind-driven wildfires.
    Prichard SJ; Povak NA; Kennedy MC; Peterson DW
    Ecol Appl; 2020 Jul; 30(5):e02104. PubMed ID: 32086976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of wildfires on air pollution and health across land use categories in Brazil over a 16-year period.
    Cobelo I; Castelhano FJ; Borge R; Roig HL; Adams M; Amini H; Koutrakis P; Réquia WJ
    Environ Res; 2023 May; 224():115522. PubMed ID: 36813066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wildfire prediction using zero-inflated negative binomial mixed models: Application to Spain.
    Bugallo M; Esteban MD; Marey-Pérez MF; Morales D
    J Environ Manage; 2023 Feb; 328():116788. PubMed ID: 36525738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the impact of wildfires on property values in wildland-urban intermix and interface in Colorado: A hedonic approach.
    Shi L; Chen B; Chen X; Chen Z
    J Environ Manage; 2022 Oct; 319():115672. PubMed ID: 35842986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships of climate, human activity, and fire history to spatiotemporal variation in annual fire probability across California.
    Park IW; Mann ML; Flint LE; Flint AL; Moritz M
    PLoS One; 2021; 16(11):e0254723. PubMed ID: 34731170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Housing arrangement and location determine the likelihood of housing loss due to wildfire.
    Syphard AD; Keeley JE; Massada AB; Brennan TJ; Radeloff VC
    PLoS One; 2012; 7(3):e33954. PubMed ID: 22470499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust projections of future fire probability for the conterminous United States.
    Gao P; Terando AJ; Kupfer JA; Morgan Varner J; Stambaugh MC; Lei TL; Kevin Hiers J
    Sci Total Environ; 2021 Oct; 789():147872. PubMed ID: 34082198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can wildland fire management alter 21st-century subalpine fire and forests in Grand Teton National Park, Wyoming, USA?
    Hansen WD; Abendroth D; Rammer W; Seidl R; Turner MG
    Ecol Appl; 2020 Mar; 30(2):e02030. PubMed ID: 31674698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rethinking the focus on forest fires in federal wildland fire management: Landscape patterns and trends of non-forest and forest burned area.
    Crist MR
    J Environ Manage; 2023 Feb; 327():116718. PubMed ID: 36565577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wildfire impacts on surface water quality parameters: Cause of data variability and reporting needs.
    Raoelison OD; Valenca R; Lee A; Karim S; Webster JP; Poulin BA; Mohanty SK
    Environ Pollut; 2023 Jan; 317():120713. PubMed ID: 36435284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning and Transformer Approaches for UAV-Based Wildfire Detection and Segmentation.
    Ghali R; Akhloufi MA; Mseddi WS
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent bark beetle outbreaks influence wildfire severity in mixed-conifer forests of the Sierra Nevada, California, USA.
    Wayman RB; Safford HD
    Ecol Appl; 2021 Apr; 31(3):e02287. PubMed ID: 33426715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of wildfires on ozone exceptional events in the Western u.s.
    Jaffe DA; Wigder N; Downey N; Pfister G; Boynard A; Reid SB
    Environ Sci Technol; 2013 Oct; 47(19):11065-72. PubMed ID: 23980897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke.
    Liu JC; Pereira G; Uhl SA; Bravo MA; Bell ML
    Environ Res; 2015 Jan; 136():120-32. PubMed ID: 25460628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.