These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30980965)

  • 1. Probing diffusion dynamics during hydrate formation by high field NMR relaxometry and diffusometry.
    Thrane LW; Seymour JD; Codd SL
    J Magn Reson; 2019 Jun; 303():7-16. PubMed ID: 30980965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrate Shell Growth Measured Using NMR.
    Haber A; Akhfash M; Loh CK; Aman ZM; Fridjonsson EO; May EF; Johns ML
    Langmuir; 2015 Aug; 31(32):8786-94. PubMed ID: 26102311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing water solubility with decreasing droplet size limits the use of water NMR diffusometry in submicron W/O-emulsion droplet size analysis.
    Balcaen M; De Neve L; Vermeir L; Courtin T; Dewettinck K; Sinnaeve D; Van der Meeren P
    J Colloid Interface Sci; 2018 Mar; 514():364-375. PubMed ID: 29278792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-diffusion studies by intra- and inter-molecular spin-lattice relaxometry using field-cycling: Liquids, plastic crystals, porous media, and polymer segments.
    Kimmich R; Fatkullin N
    Prog Nucl Magn Reson Spectrosc; 2017 Aug; 101():18-50. PubMed ID: 28844220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overhauser Dynamic Nuclear Polarization-Enhanced NMR Relaxometry.
    Franck JM; Kausik R; Han S
    Microporous Mesoporous Mater; 2013 Sep; 178():113-118. PubMed ID: 23837010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multi-Scale Study of Water Dynamics under Confinement, Exploiting Numerical Simulations in Relation to NMR Relaxometry, PGSE and NMR Micro-Imaging Experiments: An Application to the Clay/Water Interface.
    Porion P; Delville A
    Int J Mol Sci; 2020 Jun; 21(13):. PubMed ID: 32630160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clathrate formation and dissociation in vapor/water/ice/hydrate systems in SBA-15, sol-gel and CPG porous media, as probed by NMR relaxation, novel protocol NMR cryoporometry, neutron scattering and ab initio quantum-mechanical molecular dynamics simulation.
    Webber JB; Anderson R; Strange JH; Tohidi B
    Magn Reson Imaging; 2007 May; 25(4):533-6. PubMed ID: 17466781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer dynamics under nanoscopic constraints: the "corset effect" as revealed by NMR relaxometry and diffusometry.
    Fatkullin N; Fischer E; Mattea C; Beginn U; Kimmich R
    Chemphyschem; 2004 Jun; 5(6):884-94. PubMed ID: 15253315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model for the interpretation of nuclear magnetic resonance relaxometry of hydrated porous silicate materials.
    Faux DA; Cachia SH; McDonald PJ; Bhatt JS; Howlett NC; Churakov SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032311. PubMed ID: 25871114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enclosed volume determination of concentrated dioctadecyldimethylammonium chloride (DODAC) vesicular dispersions by low-resolution proton NMR diffusometry and T2 relaxometry.
    Sabatino P; Saveyn P; Martins JC; Van der Meeren P
    Langmuir; 2011 Apr; 27(8):4532-40. PubMed ID: 21417345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing structure and dynamics of bulk and confined crude oils by multiscale NMR spectroscopy, diffusometry, and relaxometry.
    Korb JP; Louis-Joseph A; Benamsili L
    J Phys Chem B; 2013 Jun; 117(23):7002-14. PubMed ID: 23687962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of experimental times in T
    Silletta EV; Velasco MI; Monti GA; Acosta RH
    J Magn Reson; 2022 Jan; 334():107112. PubMed ID: 34864390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast two-dimensional NMR relaxometry for investigating molecular processes in real time.
    Ahola S; Telkki VV
    Chemphyschem; 2014 Jun; 15(8):1687-92. PubMed ID: 24634359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New applications and perspectives of fast field cycling NMR relaxometry.
    Steele RM; Korb JP; Ferrante G; Bubici S
    Magn Reson Chem; 2016 Jun; 54(6):502-9. PubMed ID: 25855084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A two-region transport model for interpreting T
    Maneval JE; Nelson ML; Thrane LW; Codd SL; Seymour JD
    J Magn Reson; 2019 Nov; 308():106592. PubMed ID: 31542448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR Relaxometry to Characterize the Drug Structural Phase in a Porous Construct.
    Thrane LW; Berglund EA; Wilking JN; Vodak D; Seymour JD
    Mol Pharm; 2018 Jul; 15(7):2614-2620. PubMed ID: 29856634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractal analysis on CO
    Zhao Y; Li M; Dong S; Zheng JN; Lei X; Chen C; Song Y
    Sci Total Environ; 2023 Feb; 859(Pt 2):160326. PubMed ID: 36414064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale nuclear magnetic relaxation dispersion of complex liquids in bulk and confinement.
    Korb JP
    Prog Nucl Magn Reson Spectrosc; 2018 Feb; 104():12-55. PubMed ID: 29405980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-frequency proton NMR relaxometry of a polymer dispersed liquid crystal above TNI.
    Vilfan M; Lahajnar G; Zupancic I; Zalar B
    Magn Reson Imaging; 2003; 21(3-4):169-75. PubMed ID: 12850704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-low-field NMR relaxation and diffusion measurements using an optical magnetometer.
    Ganssle PJ; Shin HD; Seltzer SJ; Bajaj VS; Ledbetter MP; Budker D; Knappe S; Kitching J; Pines A
    Angew Chem Int Ed Engl; 2014 Sep; 53(37):9766-70. PubMed ID: 25081416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.