These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 30981010)

  • 1. Shifts in fermentation end products and bacterial community composition in long-term, sequentially transferred in vitro ruminal enrichment cultures fed switchgrass with and without ethanol as a co-substrate.
    Lin M; Dai X; Weimer PJ
    Bioresour Technol; 2019 Aug; 285():121324. PubMed ID: 30981010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of medium-chain volatile fatty acids by mixed ruminal microorganisms is enhanced by ethanol in co-culture with Clostridium kluyveri.
    Weimer PJ; Nerdahl M; Brandl DJ
    Bioresour Technol; 2015 Jan; 175():97-101. PubMed ID: 25459809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentation of model hemicelluloses by Prevotella strains and Butyrivibrio fibrisolvens in pure culture and in ruminal enrichment cultures.
    Emerson EL; Weimer PJ
    Appl Microbiol Biotechnol; 2017 May; 101(10):4269-4278. PubMed ID: 28180916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of mucin and its carbohydrate constituents on Escherichia coli O157 growth in batch culture fermentations with ruminal or fecal microbial inoculum.
    Fox JT; Drouillard JS; Shi X; Nagaraja TG
    J Anim Sci; 2009 Apr; 87(4):1304-13. PubMed ID: 19028855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets.
    Bayat AR; Kairenius P; Stefański T; Leskinen H; Comtet-Marre S; Forano E; Chaucheyras-Durand F; Shingfield KJ
    J Dairy Sci; 2015 May; 98(5):3166-81. PubMed ID: 25726099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.
    van Gastelen S; Visker MHPW; Edwards JE; Antunes-Fernandes EC; Hettinga KA; Alferink SJJ; Hendriks WH; Bovenhuis H; Smidt H; Dijkstra J
    J Dairy Sci; 2017 Nov; 100(11):8939-8957. PubMed ID: 28918153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of corn condensed distillers solubles supplementation on ruminal fermentation, digestion, and in situ disappearance in steers consuming low-quality hay.
    Gilbery TC; Lardy GP; Soto-Navarro SA; Bauer ML; Caton JS
    J Anim Sci; 2006 Jun; 84(6):1468-80. PubMed ID: 16699103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of pH and fermentative substrate on ruminal metabolism of fatty acids during short-term in vitro incubation.
    Troegeler-Meynadier A; Palagiano C; Enjalbert F
    J Anim Physiol Anim Nutr (Berl); 2014 Aug; 98(4):704-13. PubMed ID: 24021056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of repeated subacute ruminal acidosis challenges on the adaptation of the rumen bacterial community in Holstein bulls.
    Nagata R; Kim YH; Ohkubo A; Kushibiki S; Ichijo T; Sato S
    J Dairy Sci; 2018 May; 101(5):4424-4436. PubMed ID: 29477528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Ruminal fermentation, gastrointestinal morphology, and microbial community.
    Xiao JX; Alugongo GM; Chung R; Dong SZ; Li SL; Yoon I; Wu ZH; Cao ZJ
    J Dairy Sci; 2016 Jul; 99(7):5401-5412. PubMed ID: 27157569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationships between odd- and branched-chain fatty acids to ruminal fermentation parameters and bacterial populations with different dietary ratios of forage and concentrate.
    Zhang Y; Liu K; Hao X; Xin H
    J Anim Physiol Anim Nutr (Berl); 2017 Dec; 101(6):1103-1114. PubMed ID: 27862409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of a Saccharomyces cerevisiae culture on in vitro mixed ruminal microorganism fermentation.
    Sullivan HM; Martin SA
    J Dairy Sci; 1999 Sep; 82(9):2011-6. PubMed ID: 10509261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dietary energy levels on rumen bacterial community composition in Holstein heifers under the same forage to concentrate ratio condition.
    Bi Y; Zeng S; Zhang R; Diao Q; Tu Y
    BMC Microbiol; 2018 Jul; 18(1):69. PubMed ID: 29996759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of fish oil and sunflower oil on rumen fermentation characteristics and fatty acid composition of digesta in ewes fed a high concentrate diet.
    Toral PG; Shingfield KJ; Hervás G; Toivonen V; Frutos P
    J Dairy Sci; 2010 Oct; 93(10):4804-17. PubMed ID: 20855014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of protein fractionation and ruminal and intestinal digestibility of corn milling co-products.
    Kelzer JM; Kononoff PJ; Tedeschi LO; Jenkins TC; Karges K; Gibson ML
    J Dairy Sci; 2010 Jun; 93(6):2803-15. PubMed ID: 20494190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro response to EPA, DPA, and DHA: Comparison of effects on ruminal fermentation and biohydrogenation of 18-carbon fatty acids in cows and ewes.
    Toral PG; Hervás G; Carreño D; Leskinen H; Belenguer A; Shingfield KJ; Frutos P
    J Dairy Sci; 2017 Aug; 100(8):6187-6198. PubMed ID: 28601459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of cobalt concentration on vitamin B12 production and fermentation of mixed ruminal microorganisms grown in continuous culture flow-through fermentors.
    Tiffany ME; Fellner V; Spears JW
    J Anim Sci; 2006 Mar; 84(3):635-40. PubMed ID: 16478955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of lauric acid and coconut oil on ruminal fermentation, digestion, ammonia losses from manure, and milk fatty acid composition in lactating cows.
    Hristov AN; Vander Pol M; Agle M; Zaman S; Schneider C; Ndegwa P; Vaddella VK; Johnson K; Shingfield KJ; Karnati SK
    J Dairy Sci; 2009 Nov; 92(11):5561-82. PubMed ID: 19841218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of concentrate replacement by feed blocks on ruminal fermentation and microbial growth in goats and single-flow continuous-culture fermenters.
    Molina-Alcaide E; Pascual MR; Cantalapiedra-Hijar G; Morales-García EY; Martín-García AI
    J Anim Sci; 2009 Apr; 87(4):1321-33. PubMed ID: 19098232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of cellobiose and monensin on in vitro fermentation of organic acids by mixed ruminal bacteria.
    Callaway TR; Martin SA
    J Dairy Sci; 1997 Jun; 80(6):1126-35. PubMed ID: 9201583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.