These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 30981238)
1. A lattice Boltzmann model for squirmers. Kuron M; Stärk P; Burkard C; de Graaf J; Holm C J Chem Phys; 2019 Apr; 150(14):144110. PubMed ID: 30981238 [TBL] [Abstract][Full Text] [Related]
2. Hydrodynamic interaction of a self-propelling particle with a wall : Comparison between an active Janus particle and a squirmer model. Shen Z; Würger A; Lintuvuori JS Eur Phys J E Soft Matter; 2018 Mar; 41(3):39. PubMed ID: 29594924 [TBL] [Abstract][Full Text] [Related]
3. Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls. Lintuvuori JS; Brown AT; Stratford K; Marenduzzo D Soft Matter; 2016 Sep; 12(38):7959-7968. PubMed ID: 27714374 [TBL] [Abstract][Full Text] [Related]
4. Guidance of microswimmers by wall and flow: Thigmotaxis and rheotaxis of unsteady squirmers in two and three dimensions. Ishimoto K Phys Rev E; 2017 Oct; 96(4-1):043103. PubMed ID: 29347500 [TBL] [Abstract][Full Text] [Related]
5. Hydrodynamic mobility reversal of squirmers near flat and curved surfaces. Kuron M; Stärk P; Holm C; de Graaf J Soft Matter; 2019 Jul; 15(29):5908-5920. PubMed ID: 31282522 [TBL] [Abstract][Full Text] [Related]
6. Hydrodynamic interaction of microswimmers near a wall. Li GJ; Ardekani AM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013010. PubMed ID: 25122372 [TBL] [Abstract][Full Text] [Related]
7. Hydrodynamic interactions between squirmers near walls: far-field dynamics and near-field cluster stability. Théry A; Maaß CC; Lauga E R Soc Open Sci; 2023 Jun; 10(6):230223. PubMed ID: 37388310 [TBL] [Abstract][Full Text] [Related]
8. Stability of a Dumbbell Micro-Swimmer. Ishikawa T Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30621046 [TBL] [Abstract][Full Text] [Related]
9. Motion of microswimmers in cylindrical microchannels. Overberg FA; Gompper G; Fedosov DA Soft Matter; 2024 Mar; 20(13):3007-3020. PubMed ID: 38495021 [TBL] [Abstract][Full Text] [Related]
10. Clustering of microswimmers: interplay of shape and hydrodynamics. Theers M; Westphal E; Qi K; Winkler RG; Gompper G Soft Matter; 2018 Oct; 14(42):8590-8603. PubMed ID: 30339172 [TBL] [Abstract][Full Text] [Related]
11. Hydrodynamic Behavior of Self-Propelled Particles in a Simple Shear Flow. Qi T; Lin J; Ouyang Z Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885078 [TBL] [Abstract][Full Text] [Related]
12. Collective dynamics in a monolayer of squirmers confined to a boundary by gravity. Kuhr JT; Rühle F; Stark H Soft Matter; 2019 Jul; 15(28):5685-5694. PubMed ID: 31246219 [TBL] [Abstract][Full Text] [Related]
13. Mesoscale simulations of hydrodynamic squirmer interactions. Götze IO; Gompper G Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041921. PubMed ID: 21230327 [TBL] [Abstract][Full Text] [Related]