These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 30981238)
21. Multiparticle collision dynamics simulations of a squirmer in a nematic fluid. Mandal S; Mazza MG Eur Phys J E Soft Matter; 2021 May; 44(5):64. PubMed ID: 33939056 [TBL] [Abstract][Full Text] [Related]
22. Effective squirmer models for self-phoretic chemically active spherical colloids. Popescu MN; Uspal WE; Eskandari Z; Tasinkevych M; Dietrich S Eur Phys J E Soft Matter; 2018 Dec; 41(12):145. PubMed ID: 30569319 [TBL] [Abstract][Full Text] [Related]
23. Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion. Clopés J; Gompper G; Winkler RG Soft Matter; 2020 Dec; 16(47):10676-10687. PubMed ID: 33089276 [TBL] [Abstract][Full Text] [Related]
24. Emergent collective dynamics of bottom-heavy squirmers under gravity. Rühle F; Stark H Eur Phys J E Soft Matter; 2020 May; 43(5):26. PubMed ID: 32445113 [TBL] [Abstract][Full Text] [Related]
25. Direct-forcing fictitious domain method for simulating non-Brownian active particles. Lin Z; Gao T Phys Rev E; 2019 Jul; 100(1-1):013304. PubMed ID: 31499789 [TBL] [Abstract][Full Text] [Related]
26. Squirmer hydrodynamics near a periodic surface topography. Ishimoto K; Gaffney EA; Smith DJ Front Cell Dev Biol; 2023; 11():1123446. PubMed ID: 37123410 [TBL] [Abstract][Full Text] [Related]
27. Gyrotactic cluster formation of bottom-heavy squirmers. Rühle F; Zantop AW; Stark H Eur Phys J E Soft Matter; 2022 Mar; 45(3):26. PubMed ID: 35304659 [TBL] [Abstract][Full Text] [Related]
28. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries. Silva G; Semiao V Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253 [TBL] [Abstract][Full Text] [Related]
29. Collective sedimentation of squirmers under gravity. Kuhr JT; Blaschke J; Rühle F; Stark H Soft Matter; 2017 Oct; 13(41):7548-7555. PubMed ID: 28967939 [TBL] [Abstract][Full Text] [Related]
30. Phase separation and coexistence of hydrodynamically interacting microswimmers. Blaschke J; Maurer M; Menon K; Zöttl A; Stark H Soft Matter; 2016 Dec; 12(48):9821-9831. PubMed ID: 27869284 [TBL] [Abstract][Full Text] [Related]
32. Direct numerical simulations of a microswimmer in a viscoelastic fluid. Kobayashi T; Jung G; Matsuoka Y; Nakayama Y; Molina JJ; Yamamoto R Soft Matter; 2023 Sep; 19(37):7109-7121. PubMed ID: 37694444 [TBL] [Abstract][Full Text] [Related]
33. Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries. Berk Usta O; Ladd AJ; Butler JE J Chem Phys; 2005 Mar; 122(9):094902. PubMed ID: 15836176 [TBL] [Abstract][Full Text] [Related]
34. The Raspberry model for hydrodynamic interactions revisited. II. The effect of confinement. de Graaf J; Peter T; Fischer LP; Holm C J Chem Phys; 2015 Aug; 143(8):084108. PubMed ID: 26328819 [TBL] [Abstract][Full Text] [Related]
35. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme. Ginzburg I Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489 [TBL] [Abstract][Full Text] [Related]
36. Dynamics of a chiral swimmer sedimenting on a flat plate. Fadda F; Molina JJ; Yamamoto R Phys Rev E; 2020 May; 101(5-1):052608. PubMed ID: 32575256 [TBL] [Abstract][Full Text] [Related]
37. Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows. Liang H; Xu J; Chen J; Wang H; Chai Z; Shi B Phys Rev E; 2018 Mar; 97(3-1):033309. PubMed ID: 29776082 [TBL] [Abstract][Full Text] [Related]
38. Newtonian fluid meets an elastic solid: coupling lattice Boltzmann and lattice-spring models. Buxton GA; Verberg R; Jasnow D; Balazs AC Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056707. PubMed ID: 16089691 [TBL] [Abstract][Full Text] [Related]
39. Multi-particle collision dynamics with a non-ideal equation of state. II. Collective dynamics of elongated squirmer rods. Zantop AW; Stark H J Chem Phys; 2021 Oct; 155(13):134904. PubMed ID: 34624984 [TBL] [Abstract][Full Text] [Related]
40. Settling mode of a bottom-heavy squirmer in a narrow vessel. Tingting Q; Jianzhong L; Zhenyu O; Jue Z Soft Matter; 2023 Jan; 19(4):652-669. PubMed ID: 36597923 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]