These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30981241)

  • 1. Theoretical investigation of size, shape, and aspect ratio effect on the LSPR sensitivity of hollow-gold nanoshells.
    Shabaninezhad M; Ramakrishna G
    J Chem Phys; 2019 Apr; 150(14):144116. PubMed ID: 30981241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced refractive index sensitivity of localized surface plasmon resonance inflection points in single hollow gold nanospheres with inner cavity.
    Hong YA; Ha JW
    Sci Rep; 2022 Apr; 12(1):6983. PubMed ID: 35484278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Backward-scattering-based Localized Surface Plasmon Resonance Sensors with Gold Nanospheres and Nanoshells.
    Kawawaki T; Shinjo N; Tatsuma T
    Anal Sci; 2016; 32(3):271-4. PubMed ID: 26960604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualizing the size, shape, morphology, and localized surface plasmon resonance of individual gold nanoshells by near-infrared multispectral imaging microscopy.
    Mejac I; Bryan WW; Lee TR; Tran CD
    Anal Chem; 2009 Aug; 81(16):6687-94. PubMed ID: 19618908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors.
    Mahmoud MA; El-Sayed MA
    J Am Chem Soc; 2010 Sep; 132(36):12704-10. PubMed ID: 20722373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of core dielectric properties on the localized surface plasmonic spectra of gold-coated magnetic core-shell nanoparticles.
    Chaffin EA; Bhana S; O'Connor RT; Huang X; Wang Y
    J Phys Chem B; 2014 Dec; 118(49):14076-84. PubMed ID: 25010347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable near-infrared optical properties of three-layered metal nanoshells.
    Wu D; Xu X; Liu X
    J Chem Phys; 2008 Aug; 129(7):074711. PubMed ID: 19044796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic nanobiosensor based on Au nanorods with improved sensitivity: A comparative study for two different configurations.
    Peixoto LPF; Santos JFL; Andrade GFS
    Anal Chim Acta; 2019 Nov; 1084():71-77. PubMed ID: 31519236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Au@Ag core-shell nanocubes containing varying shaped cores and their localized surface plasmon resonances.
    Gong J; Zhou F; Li Z; Tang Z
    Langmuir; 2012 Jun; 28(24):8959-64. PubMed ID: 22299655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refractive index susceptibility of the plasmonic palladium nanoparticle: potential as the third plasmonic sensing material.
    Sugawa K; Tahara H; Yamashita A; Otsuki J; Sagara T; Harumoto T; Yanagida S
    ACS Nano; 2015 Feb; 9(2):1895-904. PubMed ID: 25629586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced optical responses of Au@Pd core/shell nanobars.
    Zhang K; Xiang Y; Wu X; Feng L; He W; Liu J; Zhou W; Xie S
    Langmuir; 2009 Jan; 25(2):1162-8. PubMed ID: 19090666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiphoton photoelectron emission microscopy of single Au nanorods: combined experimental and theoretical study of rod morphology and dielectric environment on localized surface plasmon resonances.
    Grubisic A; Schweikhard V; Baker TA; Nesbitt DJ
    Phys Chem Chem Phys; 2013 Jul; 15(26):10616-27. PubMed ID: 23417070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ellipsometric advances for local surface plasmon resonance to determine chitosan adsorption on layer-by-layer gold nanoparticles.
    Su YH; Teoh LG; Lai WH; Chang SH; Yang HC; Hon MH
    Appl Spectrosc; 2007 Sep; 61(9):1007-14. PubMed ID: 17910799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes.
    Sun Y; Xia Y
    Anal Chem; 2002 Oct; 74(20):5297-305. PubMed ID: 12403584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal geometry parameter for plasmonic sensitivities of individual Au nanopoarticle sensors.
    Du C; Yang W; Peng S; Shi D
    Phys Chem Chem Phys; 2019 Apr; 21(14):7654-7660. PubMed ID: 30911743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hollow Gold-Silver Nanoshells Coated with Ultrathin SiO
    Srinoi P; Marquez MD; Lee TC; Lee TR
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33158286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust LSPR Sensing Using Thermally Embedded Au Nanoparticles in Glass Substrates.
    Figueiredo NM; Serra R; Cavaleiro A
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34204448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enlarge the biologic coating-induced absorbance enhancement of Au-Ag bimetallic nanoshells by tuning the metal composition.
    Zhu J; Li X; Li JJ; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():571-577. PubMed ID: 28881282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-Free Detection of Tear Biomarkers Using Hydrogel-Coated Gold Nanoshells in a Localized Surface Plasmon Resonance-Based Biosensor.
    Culver HR; Wechsler ME; Peppas NA
    ACS Nano; 2018 Sep; 12(9):9342-9354. PubMed ID: 30204412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.