These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 30981268)

  • 21. Correlating Atom Probe Tomography with Atomic-Resolved Scanning Transmission Electron Microscopy: Example of Segregation at Silicon Grain Boundaries.
    Stoffers A; Barthel J; Liebscher CH; Gault B; Cojocaru-Mirédin O; Scheu C; Raabe D
    Microsc Microanal; 2017 Apr; 23(2):291-299. PubMed ID: 28215198
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals.
    Han X; Wang L; Yue Y; Zhang Z
    Ultramicroscopy; 2015 Apr; 151():94-100. PubMed ID: 25576291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Copper Segregation at Low-Angle Grain Boundaries on the Mechanisms of Plastic Relaxation in Nanocrystalline Aluminum: An Atomistic Study.
    Krasnikov V; Mayer A; Bezborodova P; Gazizov M
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The interplay of structure and dynamics at grain boundaries.
    Riet AA; Van Orman JA; Lacks DJ
    J Chem Phys; 2018 Nov; 149(19):194501. PubMed ID: 30466282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atomically ordered solute segregation behaviour in an oxide grain boundary.
    Feng B; Yokoi T; Kumamoto A; Yoshiya M; Ikuhara Y; Shibata N
    Nat Commun; 2016 Mar; 7():11079. PubMed ID: 27004614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Significant reduction in hydration energy for yttria stabilized zirconia grain boundaries and the consequences for proton conduction.
    Dawson JA; Tanaka I
    Langmuir; 2014 Sep; 30(34):10456-64. PubMed ID: 25105345
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atomic structure of a CeO2 grain boundary: the role of oxygen vacancies.
    Hojo H; Mizoguchi T; Ohta H; Findlay SD; Shibata N; Yamamoto T; Ikuhara Y
    Nano Lett; 2010 Nov; 10(11):4668-72. PubMed ID: 20977250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and Migration Mechanisms of Small Vacancy Clusters in Cu: A Combined EAM and DFT Study.
    Fotopoulos V; Mora-Fonz D; Kleinbichler M; Bodlos R; Kozeschnik E; Romaner L; Shluger AL
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parameterized electronic description of carbon cohesion in iron grain boundaries.
    Hatcher N; Madsen GK; Drautz R
    J Phys Condens Matter; 2014 Apr; 26(14):145502. PubMed ID: 24651649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Silver and cesium diffusion dynamics at the β-SiC Σ5 grain boundary investigated with density functional theory molecular dynamics and metadynamics.
    Rabone J; López-Honorato E; Van Uffelen P
    J Phys Chem A; 2014 Feb; 118(5):915-26. PubMed ID: 24422635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. "Atomic Force Masking" Induced Formation of Effective Hot Spots along Grain Boundaries of Metal Thin Films.
    Kim KH; Chae SS; Jang S; Choi WJ; Chang H; Lee JO; Lee TI
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32094-32101. PubMed ID: 27933813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Atomic scale verification of oxide-ion vacancy distribution near a single grain boundary in YSZ.
    An J; Park JS; Koh AL; Lee HB; Jung HJ; Schoonman J; Sinclair R; Gür TM; Prinz FB
    Sci Rep; 2013; 3():2680. PubMed ID: 24042150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diffusion of Alkali Metals in Polycrystalline CuInSe
    Chugh M; Kühne TD; Mirhosseini H
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14821-14829. PubMed ID: 30924332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Grain boundary sliding in pure and segregated bicrystals: a molecular dynamics and first principles study.
    Yuasa M; Nakazawa T; Mabuchi M
    J Phys Condens Matter; 2012 Jul; 24(26):265703. PubMed ID: 22677912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inversion domain boundaries in MoSe
    Truong QD; Hung NT; Nakayasu Y; Nayuki K; Sasaki Y; Murukanahally Kempaiah D; Yin LC; Tomai T; Saito R; Honma I
    RSC Adv; 2018 Sep; 8(58):33391-33397. PubMed ID: 35548164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Observation of atomic diffusion at twin-modified grain boundaries in copper.
    Chen KC; Wu WW; Liao CN; Chen LJ; Tu KN
    Science; 2008 Aug; 321(5892):1066-9. PubMed ID: 18719278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stabilization and Self-Passivation of Grain Boundaries in Halide Perovskite by Rigid Body Translation.
    Park JS
    J Phys Chem Lett; 2022 May; 13(20):4628-4633. PubMed ID: 35587377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.
    Wang B; Yang KR; Xu X; Isegawa M; Leverentz HR; Truhlar DG
    Acc Chem Res; 2014 Sep; 47(9):2731-8. PubMed ID: 24841937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-scale characterization by FIB-SEM/TEM/3DAP.
    Ohkubo T; Sepehri-Amin H; Sasaki TT; Hono K
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i6-i7. PubMed ID: 25359845
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding solute effect on grain boundary strength based on atomic size and electronic interaction.
    Huang Z; Wang P; Chen F; Shen Q; Zhang L
    Sci Rep; 2020 Oct; 10(1):16856. PubMed ID: 33033350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.